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Nancy A. Lynch Alexander A. Shvartsman 2

August 15, 2005

Executive summary. This Small Business Technology Transfer Phase I project developed a modeling lan-
guage and laid a foundation for computational support tools for specifying, analyzing, and verifying complex
distributed system designs. Ultimately, the overall modeling and analysis framework will provide an integrated
suite of tools and methods leading to qualitative improvements in the design of dependable distributed systems.
In more detail, this project developed: (a) a formal modeling language, called TIOA (Timed Input/Output Au-
tomata), for specifying timed, asynchronous, and interacting systems components, (b) the front-end processor
for TIOA, incorporating syntax and type checking, and providing interfaces to computer-aided design tools, (c) a
simulation tool allowing simulation of specifications and paired simulations of a specification and an abstract
implementation, and (d) a theorem-proving link through an interface to PVS. To demonstrate the feasibility of
this approach, this project produced examples of specification and analysis of distributed algorithms using this
framework. This project provides the basis for refining the language and extending and integrating the associated
tool set in Phase II. This will include integration with model-checking tools, and longer term the development of
tools enabling computer-aided generation of code from TIOA specifications.

For the reporting period from September 15, 2004 to July 15, 2005, the Phase I project team recorded the
following accomplishments.

(1) The TIOA language definition document was produced.
(2) A Front End tool was developed to support the TIOA langauge and provide interfaces to other tools.
(3) A TIOA simulator was developed and a subset of TIOA was designed for use with the simulator.
(4) A prototype implementation of the translator from TIOA to PVS was developed and used with selected

examples.
(5) Several examples were developed and used with the toolset. The examples use TIOA as the specification

language. The example specifications were checked using the front end tool, and then selectively simulated
using the TIOA simulator. The TIOA to PVS translator was used to produce native PVS specifications. Selected
properties of the example specifications were verified using PVS.

(6) Ease-of-use features of the toolset have been considered, including a convenient graphical user interface.
We also experimented with user-defined visualizations of simulated executions. Finally, an experimental partial
port of the tools from Unix to Windows was explored.

(7) Internal project web repository was set up and used for all project documentation, specification, code,
software, and examples.
The project closely adhered to the work documented in the original proposal.

20051005 102
1Principal Investigator and Chief Technology Officer, VEROMODO, Inc.. Email: lynch@theory.csail.mit.edu.
2Co-Principal Investigator and President, VEROMODO, Inc.. Email: aas@cse.uconn.edu.
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1 Project Landscape and Summary of Accomplishments

During Phase I of our project we demonstrated the feasibility of providing a comprehensive computer-aided
framework for modeling and analyzing complex distributed systems on the basis of a formally defined modelling
language. In this section we describe the challenges we face and our approach for coping with them; we then
overview our Phase I accomplishments, list personnel involved in the project, enumerate publications produced
or finalized during the project, and overview the structure of the rest of the report.

1.1 Challenges in developing distributed systems.

Developing dependable distributed systems for modem computing platforms continues to be challenging. While

the availability of distributed middleware makes feasible the construction of systems that run on distributed
platforms, ensuring that the resulting systems satisfy specific safety, timing, and fault-tolerance requirements
remains problematic. The middleware services used for constructing distributed software are specified informally
and without precise guarantees of efficiency, timing, scalability, compositionality, and fault-tolerance. Even when
services and algorithms are specified formally, rigorous reasoning about the specifications is often left out of the
development process.

As contemporary distributed systems continue to grow in complexity and sophistication in many domains,
these systems are required to have formally-specified guarantees of safety, performance, and fault-tolerance. Cur-
rent software-engineering practice limits the specification of such requirements to informal descriptions. When
formal specifications are given, they are typically provided only for the system interfaces. The specification
of interfaces alone stops far short of satisfying the needs of users of critical systems. Such systems need to
be equipped with precise specifications of their semantics and guaranteed behavior. When a system is built of
smaller components, it is important to specify the properties of the system in terms of the properties of its compo-
nents. We view formal specification and analysis as valuable tools that should be at the disposal of the developers
of distributed systems.

1.2 Our approach to modeling and analysis of complex distributed systems.

Our approach uses mathematical models-in particular, interacting state machines-as an integral part of the
software development process. The stages of this process within the scope of our framework are as follows.
Abstract requirements for a distributed system are specified using a modeling language. These specifications are
then refined through multiple levels of abstraction. Each refinement step is formally validated. Validation tech-
niques include a combination of simulation, model checking, and theorem proving. The goal of the refinement
process is to produce sufficiently detailed models that (a) can ultimately be used to generate distributed code
automatically, and that (b) are guaranteed to be consistent with the modeled system requirements.

Our project builds on previous work by the investigators and others on the IOA language (named after In-
put/Output Automata) and accompanying toolset. This overall research direction was featured in the 2003 MIT
Technology Review as one of the 10 Emerging Technologies that will Change the World [103]. IOA is a lan-
guage for describing systems as compositions of interacting state machines; it supports proofs of invariants and
simulation relationships between specifications at different levels of abstraction.

With the goal of providing a formal methodology and tools to substantially improve the state of the art in
developing software for complex distributed systems, our current project includes the following: (i) development
of the TIOA language (after Timed Input/Output Automata), which subsumes IOA and includes comprehen-
sive facilities for modeling timing properties. (ii) development of commercial-grade automated tools supporting
specification and analysis of distributed system designs in TIOA, including the language front end and a simu-
lator, and (iii) development of interfaces to other computer-aided tools, such as model-checking and interactive
theorem-proving tools. Longer-term, this development will lead to computer-aided generation of code from
specifications.
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To support automated formal methods for constructing or analyzing systems, a modeling language must rest
on a solid mathematical foundation. The I/O automaton model [76] and its timed extensions [80, 74, 67, 42, 43,
40] provide such a foundation. I/O automata have been used to describe and verify many distributed algorithms
and systems (see, for example, [65, 22, 17, 16, 21, 39, 97, 32, 73, 20]). Timed I/O Automata have been used to
model timing-dependent distributed algorithms and real-time control systems [56, 107, 32, 84].

Timed 1/0 Automata are interacting state machines. They are nondeterministic, which makes them suitable
for describing systems in their most general forms. The state of a TIOA can change in two ways: discrete
transitions, which are labeled by discrete actions, change the state instantaneously, whereas trajectories are func-
tions that describe the evolution of the state variables over intervals of time. An important feature of the TIOA
framework is its support for decomposing system descriptions, either horizontally (into interacting components)
or vertically (into multiple levels of abstraction). In particular, the framework includes a notion of external
behavior for a Timed 1/0 Automaton, which describes the set of possibles interactions between the TIOA and
its environment. The framework also defines what it means for one TIOA to implement another, based on an
inclusion relationship between their external behavior sets, and defines a notion of simulation, which provides
a sufficient condition for demonstrating implementation relationships. Timed 1/0 Automata can also be com-
posed, using a composition operation that identifies external actions; this notion of composition respects external
behavior. TIOAs admit a rich set of proof methods, including invariant assertion techniques for proving that a
property is true in all reachable states, forward and backward simulation methods for proving that one automaton
implements another, and compositional methods for reasoning about collections of interacting components.

Target systems. Many types of systems are currently developed using software engineering methodology that
is less than adequate in its ability to handle formal modeling and analysis of complex distributed software, and we
anticipate that several specific types of systems will benefit from being designed within our proposed framework.
The types of systems include: (a) Distributed data systems: data collection, management, dissemination; consis-
tent replicated shared-data systems. (b) Communication: group communication systems, broadcast and multicast
systems with quality-of-service guarantees. (c) Coordination and control: traffic management, industrial process
control, automated manufacturing systems, transportation (e.g., TCAS, traffic collision avoidance system used in
civil aviation).

Many such systems involve specialized distributed platforms, such as networks of sensors and mobile ad
hoc networks. We believe our approach will be an effective aid in solving a variety of common problems in
these settings, for example, location determination, time synchronization, establishing communication structures
(spanning trees, clusters, electing leaders, etc.), communication, data management, and tracking.

1.3 Phase I objectives and summary of accomplishments

We now summarize the original objectives for Phase I and our accomplishments. In the Phase I proposal [71],
we identified the following three major objectives:

1. Design a modeling language that includes event ordering behavior and timing behavior. The language
was to be based on the successful Input/Output Automata (IOA) language, which has proved to be very
effective for modeling complex concurrent and distributed systems, for reasoning formally about system
correctness, and for developing real implementations based on the IOA specifications. The target language,
called Timed IOA, or TIOA, was to extend the IOA language to allow specification of timing behavior.

2. To enable the effective use of TIOA, we planned to prototype/integrate several tools that can be used
by system designers to partially automate the design and verification of systems expressed in TIOA. We
aimed to develop a front end processor for this language and to prototype tools to support simulation of
specifications, including simulation at multiple levels of abstraction. We also planned to develop interfaces
to interactive proof tools suitable for proving invariants and implementation relationships.

3. To demonstrate the feasibility and effectiveness of our approach, we planned to develop demonstrations
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of the use of TIOA and the associated tools. This was to include complete examples of specification,
refinement, and computer-aided verification of non-trivial systems.

We now summarize the accomplishments of the Phase I project.

" We have assembled a project team and set up a web-based tool (using Wiki) to coordinate the activities and
to serve as the document repository. The repository contains project documentation, specification, code,
software, and examples.

" We defined the TIOA language [42], which extends the highly successful IOA language [24]. The language
is accompanied by a formal framework for reasoning about timed systems specified in this language [41,
40].

" We developed the front-end tool, which supports TIOA and interfaces to other computer-aided design and
verification tools.

" We developed the TIOA Simulator, which is designed to work with a suitable subset of the TIOA language.
The TIOA Simulator requires TIOA specifications to be augmented with scheduling specifications in order
to resolve nondeterminism in the order in which events occur.

" We designed and documented an approach to translating TIOA specification to PVS specifications. We
developed an initial implementation of a translator from TIOA to PVS and we used it with selected TIOA
specification examples to reason about them using PVS.

" We developed a number of exploratory specification examples to use in conjunction with the front end,
the simulator, the TIOA-to-PVS translator, and PVS. We are continuing to develop complete examples
using TIOA and the toolset. These now include more complicated examples: a model for the SATS (Small
Aircraft Transportation System) [19] and a model for the DHCPv.6 communication protocol [18].

"* We have considered the ease-of-use features of the toolset. We also performed an experimental partial port
of the tools from Unix to Windows.

" We prototyped a user-friendly graphical interface using Eclipse and we successfully explored the possibil-
ity of providing user-defined visualization of simulated executions.

" We have established collaborative relationship with some potential users of the work.

Nancy Griffeth (CUNY/Lehman College) used TIOA to develop a virtually complete specification of
DHCPv6.

Myla Archer (Naval Research Lab) developed several proof strategies that were incorporated within our
framework. She will be using TIOA in her work at NRL.

" We established contacts with researchers at Stony Brook University, Profs. Scott Smolka and Radu Grosu,
with the goal of future cooperative development of the model checking component of our framework.

1.4 Personnel involved in Phase I work

The have assembled the following team that executed the Phase I project.

The structure of the project team as as follows:
Nancy Lynch, project technical leader and Co-PI
Alex Shvartsman, project manager and Co-PI

Peter Musial, application development
Steve Garland, front end and integration technical leader
Paul Attie, example development technical leader

Aleksandra Portnova, example development engineer
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Dilsun Kaynar, simulator technical leader
. Panayiotis Mavromatis, intermediate language development

Sajan Mitra, PVS integration
Shinya Umeno, TIOA/PVS example development

Vlad Lakin, Windows port feasibility study

Note that several team member were involved in multiple roles. Only the primary roles are given in the list above.
In order to enable the project team members to collaboratively (and remotely) edit a common set of web

pages, specifications, and other documents, we set up a website that has a Wiki.

1.5 Publications

In this section we list publications directly related to the Phase I project that were authored or co-authored by
the project personnel. All publications are available on request. One noteworthy item is the monograph [P9] that
will be published in 2005 by Morgan-Clayton.

[P1] Fivos Constantinou, Dilsun Kaynar, and Panayiotis Mavrommatis, The TIOA Simulator. CSAIL
Research Abstracts - 2005, http://publications.csail.mit.edu/abstracts/abstracts05/dilsun/dilsun.html

[P2] Stephen Garland, Dilsun Kaynar, Nancy Lynch, Joshua Tauber, and Mandana Vaziri, TIOA Tutorial,
May 22, 2005

[P3] Nancy Griffeth and Nancy Lynch, TIOA Modeling for DHCP, October 27, 2004.
http://tioa.csail.mit.edu/project/example-pages/dhcpv4/Article.pdf

[P4] Dilsun Kaynar, Nancy Lynch, and Sayan Mitra, Specifying and proving timing properties with TIOA
tools. Work in Progress Session of the 25th IEEE International Real-Time Systems Symposium
(RTSS 2004), Lisbon, Portugal, Dec 2004.

[P5] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory of Timed I/O
Automata. Revised and shortened version of Technical MIT-LCS-TR-917a (from 2004), March,
2005. http://theory.lcs.mit.edu/tds/papers/Kirli/TIOA-synthesis.ps

[P6] Joshua A. Tauber, Dilsun K. Kaynar, Nancy A. Lynch. Correctness of a Compiler for Distributed
Algorithms. Submitted for publication, 2005.

[P7] Dilsun Kaynar, Nancy Lynch, Sayan Mitra, Christine Robson. Design for TIOA Modeling Lan-
guage. Manuscript in progress, 2004. http://theory.lcs.mit.edu/ dilsun/TIOA.html

[P8] Dilsun Kaynar, Nancy Lynch, Sayan Mitra, and Stephen Garland, The TIOA Language, Design
Notes, Version 0.21, May 22, 2005

[P9] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory of Timed
I/0 Automata. Monograph to appear in Synthesis Series,. Morgan-Claypool publishers, 2005 (also
see Technical Report MIT-LCS-TR-917a, MIT Laboratory for Computer Science, Cambridge, MA,
April, 2004, http://theory.lcs.mit.edu/tds/papers/Kirli/TIOA-tr-a.ps)

[P10] Dilsun K. Kaynar and Nancy A. Lynch. Decomposing Verification of Timed 1/0 Automata. For-
mal Techniques, Modelling and Analysis of Timed and Fault Tolerant Systems: Joint International
Conferences, FORMATS 2004, and Format Technicques in Real-Time and Fault-Tolerant Systems,
FTRTFT 2004, Grenoble, France, September 22-24, 2004. Volume 3253 of Lecture Notes in Com-
puter Science, pages 84-101, Springer-Verlag, 2004.
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[Pll] Hongping Lim, Dilsun Kaynar, Nancy Lynch, and Sayan Mitra, Translating timed I/O automata
specifications for theorem proving in PVS, To be published in the proceedings of International Con-
ference on Formal Modelling and Analysis of Timed Systems (FORMATS'05), Uppsala, Sweden,
September 26-28, 2005

[P12] Hongping Lim, Nancy Lynch, and Sayan Mitra, Translating Timed 1/0 Automata Specifications for
Theorem Proving in PVS. CSAIL Research Abstracts - 2005,
http://publications.csail.mit.edu/abstracts/abstracts05/hongping/hongping.html

[P13] Nancy Lynch, Alex Shvartsman, A Framework for Modeling and Analyzing Complex Distributed
Systems, August 10, 2004

[P14] N. Lynch and A. Shvartsman Status Report 1: A Framework for Modeling and Analyzing Complex
Distributed Systems, STTR Phase 1, Contract FA9550-04-C-0084, VEROMODO, Inc., October 15,
2004.

[P15] N. Lynch and A. Shvartsman Status Report 2: A Framework for Modeling and Analyzing Complex
Distributed Systems, STTR Phase 1, Contract FA9550-04-C-0084, VEROMODO, Inc., March 15,
2005.

[P16] Nancy Lynch and Shinya Umeno, Verification of the SATS Using IOA/TIOA: A Case Study. CSAIL
Research Abstracts - 2005, http://publications.csail.mit.edu/abstracts/abstracts05/shinya/shinya.html

[P17] Sayan Mitra and Myla Archer. PVS Strategies for proving abstraction properties automata In Elec-
tronic Notes in Theoretical Computer Science, volume 125(2), 2005, pages 45-65.

(The complete bibliography cited in this report is included after the main text.)

1.6 Document structure.

In the rest of th report we focus on the details of the Phase I work and our accomplishments. We begin in
Section 2 by providing a detailed introduction to the TIOA language, the cornerstone of our project. In Section 3
we describe the language front end tool and its interfaces. In Section 4 we present our work on the TIOA
Simulator. In Section 5 we describe TIOA-to-PVS translation tool and the use of PVS in proving properties of
TIOA specifications. We briefly discuss case studies in Section 6. We conclude the main text in Section 7. The
appendices contain detailed information on selected cases studies and the overview of future planned work.

2 The TIOA Language

The timed input/output automata (TIOA) modeling framework [41, 40] is a mathematical framework that sup-
ports the description and analysis of timed systems. The TIOA language is a modeling language that provides'
notations for describing timed 1/0 automata precisely. The TIOA language is a variant of the IOA language [24],
which can be used to describe basic I/O automata with no timing information. TIOA extends and formalizes the
descriptive notations used in [41, 40] and supports a variety of analytic tools. These tools range from light-weight
tools, which check the syntax of automaton descriptions, to medium-weight tools, which simulate the action of
an automaton, and to heavier-weight tools, which provide support for proving properties of automata. Timed in-
put/ouput automata provide a mathematical model suitable for describing time-dependent behavior in concurrent
systems. The model provides a precise way of describing and reasoning about system components that interact
with each other through discrete actions as well as the continuous evolution of internal state components over
time.
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2.1 Timed input/output automata

The fundamental object in the TIOA framework is a timed (11O) automaton, which is a kind of nondeterministic,
possibly infinite-state, state machine. The state of a timed automaton is described by a valuation of state variables
that are internal to the automaton. The state of a timed automaton can change in two ways: instantaneously, by the
occurrence of a discrete transition, or over an interval of time via a trajectory, which is a function that describes
the evolution of the state variables. Trajectories may be continuous or discontinuous functions.

TIOA transitions are associated with named actions, which are classified as input, output, or internal. Input
and output actions are used for communication with the automaton's environment, whereas internal actions are
visible only to the automaton itself. The input actions are assumed not to be under the automaton's control,
whereas the automaton itself controls which output and internal actions should be performed.

The communication of a timed automaton with its environment is limited to discrete transitions associated
with actions shared between the automaton and its environment. The time domain in TIOA is the set of real
numbers (in [40] additional time domains are considered). States of automata consist of valuations of variables.
Each variable has both a static type, which defines the set of values it may assume, and a dynamic type, which
gives the set of trajectories it may follow. We assume that dynamic types are closed under some simple operations:
shifting the time domain, taking subintervals, and pasting together intervals.

A trajectory for a set V of variables describes the evolution of the variables in V over time; formally, it is
a function from a time interval that starts with 0 to valuations of V; that is, a trajectory defines a value for each
variable at each time in the interval.

Formally, a timed (I/O) automaton A consists of the following six components:
"* A set X of internal variables.
"* A set Q, which is a subset of all possible valuations of X.
"* A set of initial states, which is a non-empty subset of the set of all states.
"* A signature, which lists disjoint sets of input, output, and internal actions of A.
"* A discrete transition relation, which contains triples of the form (state, action, state), and
"* A set of trajectories for X such that Tr(t) E Q for every -r G T and every t in the domain of -r.

An action 7r is said to be enabled in a state s if there is another state s' such that (s, .7-, s') is a transition of
the automaton. Input actions are enabled in every state; i.e., automata are not able to "block" input actions from
occurring. The external actions of an automaton consist of its input and output actions.

The transition relation is usually described in precondition-effect style, which groups together all transitions
that involve a particular type of action into a single piece of code. The precondition is a predicate (that is, a
boolean-valued expression) on the state indicating the conditions under which the action is permitted to occur.
The effect describes the changes that occur as a result of the action, either in the form of a simple program or in
the form of a predicate relating the pre-state and the post-state (i.e., the states before and after the action occurs).
Actions are executed indivisibly.

Trajectories are defined using invariants, algebraic and differential equations, and "urgency" conditions that
specify when time must stop to allow a discrete action to occur.

2.2 Executions and traces

An execution fragment of an 1/0 automaton is either a finite sequence so, 7rl, s1, 7r2, ... 7rn, sn, or an infinite
sequence so, Irl. 81, s 72, .... , of alternating states si and actions iri such that (si, iri+i, si+i) is a transition of
the automaton for every i > 0. An execution is an execution fragment that begins with a start state. A state is
reachable if it occurs in some execution. The trace of an execution is the sequence of external actions in that
execution.

2.3 Properties of automata

An invariant of an automaton is any property that is true in all reachable states of the automaton.
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An automaton A is said to implement an automaton B provided that A and B have the same input and output
actions and that every trace of A is a also trace of B. In order to show that A implements B, one can use a
simulation relation between states of A and states of B such that, loosely speaking, every start state of A is
related to a start state of B and every reachable state of A is related to a state of B reached by the same series of
external actions.

For the purpose of a formal definition, we assume that A and B have the same input and output actions. A
relation R between the states of A and B is a forward simulation3 with respect to invariants IA and IB of A and
B if and only if

"* every start state of A is related (via R) to a start state of B, and

" for all states s of A and u of B satisfying the invariants 'A and IB such that R(s, u), and for every step
(s, 7r, s') of A, there is an execution fragment a of B starting with u, containing the same external actions
as 7r, and ending with a state u' such that R(s5, u').

A general theorem is that A implements B if there is a forward simulation from A to B.
Similarly, a relation R between the states of A and B is a backward simulation4 with respect to invariants IA

and IB of A and B if

"* every state of A that satisfies IA corresponds (via R) to some state of B that satisfies IB,

"* if a start state s of A is related (via R) to a state u of B that satisfies 1B, then u is a start state of B, and

"* for all states s, s' of A and u' of B satisfying the invariants such that R(s', u'), and for every step (s, 7r, s')
of A, there is an execution fragment a of B ending with u', containing the same external actions as 7r, and
starting with a state u satisfying IB such that R(s, u).

Another general theorem is that A implements B if there is an image-finite backward simulation from A to
B. Here, a relation R is image-finite provided that for any x there are only finitely many y such that R(x, y).
Moreover, the existence of any backward simulation from A to B implies that all finite traces of A are also traces
of B.

2.4 Using TIOA to formalize descriptions of timed I/O automata

We illustrate the nature of timed automata, as well as the use of TIOA to define the automata, by a few simple
examples. Figure 1 contains a simple TIOA description for an automaton, Timeout (u :Real, M:Type), that
awaits the receipt of a message of type M from another process. If u time units elapse without such a message arriv-
ing, the automaton performs a timeout action, thereby "suspecting" the other process. When a message arrives,
it "unsuspects" the other process. The automaton may suspect and unsuspect repeatedly. The automaton is pa-
rameterized by the timeout period u and the type M of the messages received by Timeout (u: Real, M: Type).

The automaton Timeout has two state variables: suspected is a boolean that is set to true when a
timeout occurs, and clock is a real number that represents a timer running at the same speed as realtime.
The initial value of suspected and clock are false and 0. The value of the automaton parameter u is con-
strained to be strictly greater than 0.

The transitions of the automaton Timeout are given in precondition/effect style. The input action receive (in)
has no precondition, which is equivalent to having true as its precondition. This is the case for all input actions;
that is, every input action in every automaton is enabled in every state. The effect of receive is to reset clock
to 0 and to set suspected to false (in case it had been true before). The output action timeout can occur
only when it is enabled, that is, only in states in which suspected is false and clock = u. Its effect is to set
suspected to true.

3hn some previous work such relations are called weak forward simulations.
4 In some previous work such relations are called weak backward simulations.
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automaton Timeout(u: Real, M: type) where u > 0
signature

input receive(m: M)
output timeout

states
suspected: Bool := false,
clock Real := 0

transitions trajectories

input receive(m) trajdef suspected
invariant suspected

suspected:= false evolve d(clock) = 1
output timeout trajdef notsuspected

invariant -'suspected
pre -suspected A clock = u stoprwhn clock d

eff suspected := true stop when clock = u
evolve d(clock) = I

Figure 1: TIOA description of a timeout process

The two trajectory definitions suspected and notsuspected correspond to two "modes" of the Timeout
automaton. While the suspected flag is false, the clock advances with rate 1, that is, with the same rate as
realtime, and time cannot go beyond the point at which clock = u. While the suspected flag is true there is
no condition on time-passage; the clock may keep advancing with rate 1. Note that trajectories do not need to be
followed until a stopping condition is reached; however, if a stopping condition is reached then time must stop.
At this point, a discrete action may occur if it is enabled.

2.5 Data types in TIOA descriptions

TIOA enables users to define the actions and states of I/O automata abstractly, using mathematical notations for
sets, sequences, etc., without having to provide concrete representations for these abstractions. Some mathemat-
ical notations are built into TIOA; others can be defined by the user. The data types Bool, Int, Nat, Real,
Char, and String can appear in TIOA descriptions without explicit definition. Compound data types can be
constructed using the following type constructors and used without explicit definition.

"* Array[I1 ..., In, E] is an n-dimensional array of elements of type E indexed by elements of types
Ii,...,In.

" Map [Dl, ... Dn, RI is a finite partial mapping of elements of an n-dimensional domain with type
D1 X ... X Dn to elements of a range with type R. Mappings differ from arrays in that they are defined only
for finitely many elements of their domains (and hence may not be totally defined).

"* Seq [E] is a finite sequence of elements of type E.

"* Set [E] is a finite set of elements of type E.

"* Ms et [E] is a finite multiset of elements of type E.

"* Null [E] is isomorphic to E extended by a single element nil.

In this tutorial, we describe operators on the built-in data types informally when they first appear in an example.
Users can introduce additional data types and type constructors by defining vocabularies for them. Each

vocabulary introduces notations for a set of types and a set of operators. In fact, each of the built-in data types is
defined by a built-in vocabulary. For example, the following built-in vocabularies provides notations for the Real
data type and its associated operators. Each operator has a signature that specifies the types of its arguments and
the type of its result. Infix, prefix, postfix, and mixfix operators are named by sequences of non-letter characters
and are defined using placeholders __ to indicate the locations of their arguments. Operators used in functional
notation (e.g., in max(a, b)) are named by simple identifiers.
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Logical Operator Datatype Operator

Symbol Meaning Input Symbol Meaning Input
V For all \A _< Less than or equal <=

3 There exists \E _ Greater than or equal >=
-, Not E Member of \in

Not equals Not a member of \notin
A And C Proper subset of \subset
V Or C Subset of \subseteq
=ý> Implies => D Proper superset of \ supset
<* If and only if <=> D Superset of \supseteq

I- Append element I
H Prepend element

Table 1: Typographical conventions

vocabulary Real
imports NumericOps(type Real, type Real, type Real)
operators

- , abs: Real --> Real
**_: Real, Int --- Real

int2real: Int -- Real

vocabulary Numericops(Tl, T2, T3: type)
types Tl T2 T3
operators

+ , - , * , / , min, max: TI, T2 -+ T3
__ < ___= ,-> , - , _#_ : TI, T2 -- Bool

As these examples illustrate, a vocabulary can import notations from another vocabularies, and it can be
parameterized to make operator notations such as _<_: Real, Real-*Bool available for the Real data type.

A vocabulary can define a type constructor, as in the following built-in vocabulary for the Null constructor.

vocabulary Null defines Null[T]
operators

nil : -Null[T]
embed : T---Null[T]

.val : Null[T] - T

The identifier T in this vocabulary is a type parameter, which is instantiated any time the constructor Null is
used to provide operator notations appropriate for that use. Thus, if x is a variable of type Null [Int], then one
can write embed (x) .val = x.

User-defined vocabularies can introduce notations for enumeration, tuple, and union types analogous to those
found in many common programming languages. For example,

vocabulary sampleVocab
types Color enumeration [red, white, blue],

Msg tuple [source, dest: Process, contents: String],
Fig union [sq: Square, circ: Circle]

can be imported by the definition of any other vocabulary or automaton to provide notations for three data types
it describes.

In this tutorial, some operators are displayed using mathematical symbols that do not appear on the standard
keyboard. Table 1 shows the input conventions for entering these symbols.
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2.6 TIOA descriptions for primitive automata

Explicit descriptions of primitive automata specify their names, action signatures, state variables, transition rela-
tions, and trajectories. All but the last of these elements must be present in every primitive automaton description.

2.6.1 Automaton names and parameters

The first line of an automaton description consists of the keyword automaton followed by the name of the
automaton. As illustrated in Figure 1, the name may be followed by a list of formal parameters enclosed within
parentheses. There are two kinds of automaton parameters. An individual parameter (such as u: Real) consists
of an identifier with its associated type, and it denotes a fixed element of that type. A type parameter (such as
m: type) consists of an identifier followed by the keyword type, and it denotes a type.Example of nondeterministic
choice of initial value for state variable

2.6.2 Action signatures

The signature for an automaton is declared using the keyword signature followed by lists of entries describing
the automaton's input, internal, and output actions. Each entry contains a name and an optional list of parameters
enclosed in parentheses. There are two kinds of action parameters. A varying parameter consists of an identifier
with its associated type, and it denotes an arbitrary element of that type. A fixed parameter consists of the
keyword const followed by a term denoting a fixed element of its type. Neither kind of parameter can have type
as its type. Each entry in the signature denotes a set of actions, one for each assignment of values to its varying
parameters.

It is possible to constrain the values of the varying parameters for an entry in the signature using the keyword
where followed by a predicate. Such constraints restrict the set of actions denoted by the entry.

2.6.3 State variables

As in the above examples, state variables are declared using the keyword states followed by a comma-separated
list of state variables and their types. State variables can be initialized using the assignment operator : = followed
either by an expression or by a nondeterministic choice. The order in which state variables are declared makes
no difference: state variables are initialized simultaneously, and their initial values cannot refer to the value of
any state variable.

A nondeterministic choice (of the form choose variable where predicate) selects an arbitrary value of the
variable that satisfies the predicate. When a nondeterministic choice is used to initialize a state variable, there
must be some value of the variable that satisfies the predicate. If the predicate is true for all values of the variable,
then the effect is the same as if no initial value had been specified for the state variable.

automaton Choice
signature output result(i: Int)
states num: Int := choose n where 1 < n A n < 3
transitions

output result(i)
pre i = nu=

Figure 2: Example of nondeterministic choice of initial value for state variable

For example, in the automaton Choice (Figure 2), the state variable num is initialized nondeterministically
to some value n that satisfies the predicate 1 < n A n < 3, i.e., to one of the values 1, 2, or 3 (the value of n
must be an integer because it is constrained to have the same type, Int, as the variable num to which it will be
assigned).

t
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It is also possible to constrain the initial values of all state variables taken together, whether or not initial
values are assigned to any individual state variable. This can be done using the keyword initially followed by a
predicate (involving state variables and automaton parameters), as illustrated by the definition of the automaton
Shuffle in Figure 3.5

vocabulary cardDeck
types cardIndex enumeration [1, 2, 3, ... , 52]

automaton Shuffle
imports cardDeck
signature

internal swap(i, j: cardIndex)
output deal(a: Array[cardIndex, String])

states
dealt: Bool := false,
name: Array[cardIndex, String],
cut: cardIndex
initially

V i: cardIndex (i k 52 A i k cut •' name[i] < name [succ (i)])
A name[52] < name[l]

transitions
internal swap(i, j; local temp: String)

pre -ndealt
eff temp := name[i];

name[i] := name[j];
name[j] := temp

output deal(a)
pre -'dealt A a = name
eff dealt := true

Figure 3: Example of a constraint on initial values for state variables

In Figure 3, the initial values of the variable cut and the array name of strings are constrained so that
name [1], ... , name [52] are sorted in two pieces, each in increasing order, with the piece after the cut con-
taining smaller elements than the piece before the cut. The constraint following initially limits only the initial
values of the state variables, not their subsequent values. (Note that the scope of the initially clause is the entire
set of state variable declarations.) The type Array[ cardIndex, String] of the state variable name consists
of arrays indexed by elements of type cardIndex and containing elements of type String (see Section 2.5).
The swap actions transpose pairs of strings until a deal action announces the contents of the array; then no
further actions occur.

When the type of a state variable is an Array, Map, or tuple (Section 2.5), TIOA also treats the elements
of the array or mapping, or the fields in the tuple, as state variables, to which values can be assigned without
affecting the values of the other elements in the array or mapping or of the fields in the tuple.

2.6.4 Transition relations

Transitions for the actions in an automaton's signature are defined following the keyword transitions. A transi-
tion definition consists of an action type (i.e., input, internal, or output), an action name with optional parame-
ters, an optional where clause, an optional precondition, and an optional effect.

5At present, users must expand the ... in the definition of the type cardIndex by hand. In the future, TIOA may provide more
convenient notations for integer subranges.
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More than one transition definition can be given for an entry in an automaton's signature. For example, the
transition definition for the swap actions in the Shuffle automaton (Figure 3) can be split into two parts:

internal swap(i, j; local temp: String) where i # j
pre -dealt
eff temp := name[i];

name[i] name[j];
name[j] temp

internal swap(i, i)
pre -'dealt

The second of these two transition definitions does not change the state, because it has no eff clause.

2.6.4.1 Transition parameters

Two kinds of parameters can be specified for a transition: ordinary parameters, corresponding to those in the
automaton's signature, and additional local parameters. The ordinary parameters accompanying an action name
in a transition definition must match those accompanying the action name in the automaton's signature, both in
number and in type. However, the keyword const does not appear in transition parameters, and all transition
parameters are treated as terms.

The simplest way to formulate the ordinary parameters for an action in a transition definition is to erase the
keyword const and the type modifiers from the parameter list in the signature;

In addition to these ordinary parameters, a transition definition can contain local variables, which are spec-
ified after the ordinary parameters and the keyword local. Local variables can be used for two purposes. As
illustrated in Figure 3, they can be used as temporary state variables. In addition, they can be used to relate the
postcondition for a transition to its precondition.

2.6.4.2 Preconditions

A precondition can be defined for a transition of an output or internal action using the keyword pre followed by
a predicate. Preconditions cannot be defined for transitions of input actions. All variables in a precondition must
be parameters of the automaton, be state or local variables, appear in parameters for the transition definition, or
be quantified explicitly in the precondition. If no precondition is given, it is assumed to be true.

An action is said to be enabled in a state if there are some values for the local variables of one of its transition
definitions that satisfy both the where clause and, together with the state variables, the precondition for that
transition definition. Input actions, whose transitions have no preconditions, are always enabled.

2.6.4.3 Effects

The effect of a transition, if any, is defined following the keyword eff. This effect is generally defined in terms of
a (possibly nondeterministic) program that assigns new values to state variables. The amount of nondeterminism
in a transition can be limited by a predicate relating the values of state variables in the post-state to each other
and to their values in the pre-state.

If the effect is missing, then the transition has none; i.e., it leaves the state unchanged.

Using programs to specify effects A program is a list of statements, separated by semicolons. Statements in
a program are executed sequentially. There are three kinds of statements: (1) assignment statements, (2) condi-
tional statements, and (3) for statements.

Assignment statements An assignment statement changes the value of a state or local variable. The state-
ment consists of the state or local variable followed by the assignment operator : = and either an expression or a
nondeterministic choice (indicated by the keyword choose). As noted in Section 2.6.3, the elements in an array or
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mapping, or the fields in a tuple, used as a state or local variable, are themselves considered as separate variables
and can appear on the left side of the assignment operator.

The expression or nondeterministic choice in an assignment statement must have the same type as the state

or local variable. The value of the expression is defined mathematically, rather than computationally, in the state
before the assignment statement is executed.6 The value of the expression then becomes the value of the state or
local variable in the state after the assignment statement is executed. Execution of an assignment statement does
not have side-effects; i.e., it does not change the value of any state or local variable other than the one on the left

side of the assignment operator.

Conditional statements A conditional statement is used to select which of several program segments to
execute in a larger program. It starts with the keyword if followed by a predicate, the keyword then, and a
program segment; it ends with the keyword ft. In between, there can be any number of elseif clauses (each of
which contains a predicate, the keyword then, and a program segment), and there can be a final else clause (which
also contains a program segment).

For statements A for statement is used to perform a program segment once for each value of a variable
that satisfies a given condition. It starts with the keyword for followed by a variable, a clause describing a set of
values for this variable, the keyword do, a program segment, and the keyword od.

vocabulary Packet
types Message, Node,

Packet tuple [contents: Message, source: Node, dest: Set[Node]]

automaton Multicast
imports Packet
signature

input mcast(m: Message, i: Node, I: Set[Node])
internal deliver(p: Packet)
output read(m: Message, j: Node)

states
network: Mset[Packet] :=
queue: Array[Node, Seq[Packet]]
initially V i: Node (queue[i] {})

transitions
input mcast(m, i, I)

eff network := insert([m, i, I], network)
internal deliver(p)

pre p E network
eff for j: Node in p.dest do queue[j] :- queue[j] p od;

network := delete(p, network)
output read(m, j)

pre queue[j] 4 LI A head(queue[j]).contents = m
eff queue[j] :- tail(queue[j])

Figure 4: Example showing use of a for statement

Figure 4 illustrates the use of a for statement in a high-level description of a multicast algorithm that has no
timing constraints. Its first line defines the Packet data type to consist of triples [contents, source, dest],
in which contents represents a message, source the Node from which the message originated, and dest the

6If a program consists of more than a single assignment statement, then the states before and after the assignment statements in the

program may be intermediate states, which do not appear in the execution fragments of the automaton.
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set of Nodes to which the message should be delivered. The state of the multicast algorithm consists of a multi-
set network, which represents the packets currently in transit, and an array queue, which represents, for each
Node, the sequence of packets delivered to that Node, but not yet read by the Node.

The mcast action inserts a new packet in the network; the notation [m, i, I] is defined by the tuple data
type (Section 2.5) and the insert operator by the multiset data type (Section 2.5). The deliver action, which
is described using a for statement, distributes a packet to all nodes in its destination set (by appending the packet
to the queue for each node in the destination set and then deleting the packet from the network). The read
action receives the contents of a packet at a particular Node by removing that packet from the queue of delivered
packets at that Node.

There are two ways to describe the set of values for the control variable in a for statement. The first consists
of the keyword in followed by an expression denoting a set or multiset of values of the appropriate type, in which
case the program following the keyword do is executed once for each value in the set or multiset. The second
consists of the keyword where followed by a predicate, in which case the program is executed once for each value
satisfying the predicate. These executions of the program occur in an arbitrary order. However, TIOA requires
that the effect of a for statement be independent of the order in which executions of its program occur.

Using predicates on states to specify effects The results of a program can be constrained by a predicate
relating the values of state variables after a transition has occurred to the values of state variables before the
transition began. Such a predicate is particularly useful when the program contains the nondeterministic choose
operator. For example,

eff name[i] choose;
name[i] choose
ensuring name' [i] = name[j] A name' [j] = name[i]

is an alternative way of writing the effect clause of the swap action in Shuffle (Figure 3). The assignment
statements indicate that the array name may be modified at indices i and j, and the ensuring clause constrains
the modifications. A primed state variable in this clause (i.e., name') indicates the value of the variable in the
post-state; an unprimed state variable (i.e., name) indicates its value in the pre-state. This notation allows us to
eliminate the local variable temp needed previously for swapping.

There are important differences between where clauses attached to nondeterministic choose operators and
those attached to ensuring clauses. A where clause restricts the value chosen by a choose operator in a single as-
signment statement, and variables appearing in the where clause denote values in the state before the assignment
statement is executed. An ensuring clause can be attached to an entire eff clause; unprimed variables appearing
in an ensuring clause denote values in the state before the transition represented by the entire eff clause occurs,
and primed variables denote values in the state after the transition has occurred.

2.6.5 Trajectories

Trajectories of an automaton are defined following the keyword trajectories. A trajectroy definition consists
of a name, an invariant, an evolve clause, and a stopping condition. More than one trajectory definition can be
used to define trajectories of an automaton. For example, the automaton Timeout in Figure 1 has two trajectory
definitions.

Each trajectory definition defines a set of trajectories; the set of all trajectories for an automaton is the con-
catenation closure of all of these sets (see [40] for the definition of concetanation for trajectories).A trajectory
belongs to the set of trajectories defined by a trajectory definition if it satisfies the predicate in its invariant clause,
the differential equations in the evolve clause and the stopping condition expressed by the stop when clause. The
stopping condition is satisfied by a trajectory if the only state in which the condition holds is the last state of that
trajectory. In other words, time cannot advance once the stopping condition becomes true.

The algorithm ClockSync is based on the exchange of physical clock values between different processes
in the system. The parameter u determines the frequency of sending messages. Processes in the system are
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automaton ClockSync(u,r: Real, i: Index)
signature

input receive(m: Real, j: Index, const i: Index) where j #i,
output send(m: Real, const i: Index)

states
nextsend: Real 0,
maxother: Real := 0,
physclock: Real 0
initially u > 0 A (0 < r < 1)

let logclock - max(maxother, physclock)

transitions
input receive (m, j, i)

eff maxother := max(maxother,m)
output send(m,i)

pre m = physclock A physclock = nextsend
eff nextsend := nextsend + u

trajectories
trajdef always

stop when physclock = nextsend
evolve (1 - r) < d(physclock) < (1 + r)

Figure 5: Example showing trajectory definitions

indexed by the elements of the type Index which we assume to be pre-defined. ClockSync has a physical clock
physclock, which may drift from the real time with a drift rate bounded by r. It uses the variable maxother
to keep track of the largest physical clock value of the other processes in the system. The variable nextsend
records when it is supposed to send its physical clock to the other processes. The logical clock, logclock, is
defined to be the maximum of maxother and physclock. Formally logclock is a derived variable, which is
a function whose value is defined in terms of the state variables.

The unique trajectory definition in this example shows that the variable physclock drifts with a rate that is
bounded by r. The periodic sending of physical clocks to other processes is enforced through the stopping condi-
tion in the trajectory specification. Time is not allowed to pass beyond the point where physclock = nextsend.

3 Language Front-End and Interfaces

The front end enables the mathematical TIOA language to be used with computer-aided design tools. This
includes the ability to parse a program specified in TIOA and to provide a semantics of the program relevant to
the computer-aided tools.

In Phase I we developed a preliminary version of a front end for TIOA supporting specification, static,
syntactic, and type analysis of specifications, and providing interfaces to computer-aided design tools. The front
end is available on the (internal) website. The tool handles much of the TIOA language, including transition
definitions with stopping conditions as well as trajectory definitions. (Here, "handles" means parses, performs
static checks, and prettyprints.) Additional features include definitions for derived variables, notations for new
NDR (nondeterminism resolution) constructs, and intermediate-language output.

The Intermediate Language (IL) facilitates interfacing between specifications expressed in TIOA and the
input formats required by computer-aided tools, such as PVS, the simulator, and (planned for Phase II) a model
checker.

To summarize, there are three targets that will be serviced by the TIOA front-end:

1. Simulation (prototyped in Phase I),
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2. Model checking (front end "hooks" in Phase I, full integration in Phase II),

3. Theorem proving (prototyped in Phase I).

3.1 tioaCheck: a static semantic checker for TIOA

tioaCheck is a front-end checker for the syntax and static semantics of TIOA specifications. It can be invoked
from the command line by typing

tioaCheck [option ... ] source-file ...

or it can be invoked under Eclipse to check the TIOA specification displayed in an editor window. The names of
the source files containing TIOA specifications must end with . tioa.

If no options are provided on the command line, gioaCheck simply reports any errors that it finds in the
source files. For example, given a source file containing the specification

automaton A
signature input get(n: Int) output put(n: Int)
states value: Int
transitions

input get (n)
eff value := f(n)

output put(n)
pre n = value
eff n := n + 1

tioaCheck reports two errors:

6:20 undeclared 1-ary operator 'f'
9:11 cannot assign to 'n'

If options are provided, they produce the following results.

* -p causes ioaCheck to prettyprint (on the standard output) the selected TIOA source files. Prettyprint-
ing indents TIOA specifications to reveal their structure, and it breaks lines that exceeds the margin. Pret-
typrinting via tioaCheck does not highlight keywords. Instead, users wishing to display TIOA specifi-
cations in a LaTeX document can use a special TIOA style file, which preserves line breaks and spacing,
but highlights keywords and replaces notations such as \in with their mathematical counterparts (e.g., E).

S- i 1 causes i oaCheck to translate the selected TIOA source files into the TIOA Intermediate Language
and to write the result on the standard output.

3.2 Front end functionality development

tioaCheck extends, simplifies, and differs from our previously developed i oaCheck tool (for checking spec-
ifications for untimed automata) in the following respects.

"* It recognizes TIOA notations for time-related aspects of timed I/O automata: both discrete and continuous
types, stopping conditions for transitions, trajectories, timing-enhanced schedules for the simulator, and
timing-enhanced simulation relation definitions.

"* It defines notations for operators on datatypes using the new vocabulary construct. In IOA, such no-
tations were defined in auxiliary files, written in the Larch Shared Language (LSL). By eliminating the
dependence of TIOA on LSL, we obtain two advantages:
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- Complete TIOA specifications can be written in a single file and can be checked statically without
the need for auxiliary files written in LSL. (TIOA specifications can still be distributed over several
files, if the user wishes).

- tioaCheck and TIOA are more amenable than ioaCheck and IOA for use with theorem provers
(e.g., PVS) other than the Larch Prover. They allow axioms for abstract data types to be expressed in
languages appropriate for those theorem provers, rather than requiring them to be written in LSL.

- tioaCheck recognizes the new, uniform parameterization mechanism in TIOA for definitions of
automata and vocabularies.

"* tioaCheck recognizes and checks the new notations in TIOA for defining functions and derived vari-
ables. It also recognizes and checks notations for new NDR (nondeterminism resolution) constructs that
provide scheduling information for the TIOA simulator (see Section 4).

"* tioaCheck is written entirely in Java 5.0. This makes it more transportable than ioaCheck, which was
more difficult to compile because it was written in a combination of Java 1.4 and PolyJ (an extension to
Java 1.4 that provided the benefits of generic types before they were introduced into Java 5.0).

3.3 Front end graphical user interface

Our ultimate goal for the user interface is to take advantage of features provided by the Eclipse Rich Client
Platform development platform (see http://www.eclipse.org/rcp). In Phase I, lower level code improvements take
take advantage of features provided by the Eclipse Java Development Tools (see http://www.eclipse.org/jdt).

We have prototyped a plug-in for the Eclipse platform that enables TIOA Syntax highlighting (Figure 3.3).
This facilitates editing TIOA specifications by using Eclipse features for content assistance (e.g., keyword and
identifier completion), formatting, and refactoring. We established the feasibility of improvements in error and
warning messages. This is done by convert the messages to Eclipse format with problem markers. This will
enable us in the future (Phase II) to provide suggestions to users and mechanisms for resolving errors. Addition-
ally we can facilitate reading and editing TIOA specifications by providing Eclipse-based browsing features for
locating declarations and references.

4 The TIOA Simulator

The TIOA Simulator is a powerful tool for running TIOA programs on a single machine and observing their be-
havior. It can be used to test the programs for bugs or problems, lead to proof strategies and provide performance
predictions. The Simulator provides methods for resolving the nondeterminism of TIOA and for specifying
paired simulations. After an overview of the purpose of simulation, we present the design and implementation of
the TIOA Simulator prototype.

4.1 Purpose of simulation

The ability to simulate TIOA programs is particularly useful for a number of reasons. First, the simulator can
test the proposed model of the system and reveal any possible problems with it. Furthermore, simulations can
provide a better understanding of the system, and help develop strategies about proofs of correctness. Finally,
the simulator's trace can be used to extract possible performance predictions. We further analyze the purpose of
simulation below.

Simulation can test the model for a complex distributed system, and reveal any possible problems with the
model. The Simulator "runs" the model on a single machine, tests certain assertions and outputs the trace of the
execution. Testing the model with simulation can reveal implementation bugs or specification problems. If, on
the other hand, all the simulated executions are correct, more confidence is gained that the model is also correct.
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Figure 6: TIOA Language in the Eclipse Environment

Simulation not only leads to a better understanding of the system, but it can also be very helpful in developing
strategies for proofs of correctness. First, the simulator allows discovering invariants and testing whether invari-
ants hold throughout the sample executions. These invariants constitute good candidates for useful lemmas in
later proofs of correctness. Second, the paired simulator allows simultaneous execution of two TIOA programs,
the detailed, implementation program and a more abstract, specification automaton. Running the two together
and automatically testing whether some invariants hold can lead to candidate simulation relations, which are
frequently used proof techniques in distributed systems.

Even though the simulator runs on a single machine and does not target quantitative performance analysis,
several measurements can be taken, such as the number of messages exchanged, or the number of steps taken
before the completion of a specific task. The simulator therefore can be used to generate predictions about the
system's performance.

4.2 Design Overview

Ideally, any TIOA program could automatically run through the Simulator without any modifications. There are,
however, three main sources of problems that can be hard to solve automatically in general: (1) differential equa-
tions in evolve predicates and existential and universal quantifiers in other predicates (2) nondeterminism, either
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from the scheduling of actions and trajectories or from choose statements, and (3) data type implementations from
the abstract data type definitions.

Our solution to the above problems is to either restrict the language or let the programmer solve these prob-
lems on a case-by-case basis. In particular, we (1) slightly restrict TIOA to programs that can be simulated, (2)
extend TIOA with syntax that can be used to resolve nondeterminism, and (3) provide a number of data type
implementations and a way for the user to create implementations for new data types. Finally, we provide a way
for the user to specify simulation relations and execute pairwise simulations. These topics are further analyzed
below.

Restricting TIOA The TIOA simulator admits a subset of the TIOA language as its specification language,
the TIOA-sim language. TIOA-sim imposes some restrictions on the trajectory definitions and on quantifiers.
In particular, we restrict the form of differential equations in evolve clauses and the predicates that are used in
stopping conditions so that the simulator can compute the value of a Real variable that is reached as a result
of following a trajectory and detect the violation of stopping conditions. Moreover, no existential or universal
quantifiers are allowed in TIOA-sim, unless the quantified variables are of an enumeration type. This restriction
is necessary to allow automatic evaluation of predicates. Finally, the only for loops allowed in TIOA-sim are

those over finite sets.

Resolving Nondeterminism Specifications in TIOA can incorporate several forms of nondeterminism. Au-

tomatically resolving nondeterminism is in general a hard problem. Instead, the TIOA Simulator provides a
mechanism for resolving nondeterminism by letting the programmer specify which choice is made at any point.

Implementing Data Types TIOA provides syntax for specifying new (non-built-in) data types and operators.
Other properties of the data types can also be specified in TIOA. However, implementing these data types only
from the operators and the properties is impossible in the general case. The programmer is therefore asked
to implement data types and their operators in Simulator's implementation language (Java), and instruct the
Simulator to find these implementations. The Toolkit provides a large number of standard data types, from
Integer, Real, String, to more complex data types such as Map, Array and Binary Search Tree, which are sufficient
for most situations, and can be easily modified to fit more specific purposes.

Paired Simulations The TIOA simulator can be used to derive and test simulation relations. A simulation
relation from an automaton A to another automaton B is specified as an assertion relating the states of A and
B, when the two automata start on the same inputs and run with the same external behavior. For this purpose,
the TIOA Simulator allows the user to specify this assertion and provide a set of step correspondences. The
Simulator "runs" the two automata together, checks that the assertion holds and that the external behavior of the

two automata is the same.

4.3 Restricting TIOA

We provide a formal description of the TIOA Simulator specification language (TIOA-sim) in Appendix C.1.
Insight into the language can be gained through a simple example.

Example 4.1 The automaton TwoTaskRace below increments a counter until it is interrupted by a set action.

After being interrupted it starts decrementing the counter and reports when the counter reaches 0. The timing
constraints are expressed in absolute terms: (1) The variables firstmain and lastmain record the first and the
last time that an action from the set {increment, decrement, report} is allowed to occur. (2) The variables
firstset and lastset record the first and last time that the action set is allowed to occur. Note here that
the actions of TwoTaskRace should be viewed as belonging to two separate tasks, each of which is subject to
separate timing constraints. The first task consists of the actions increment,decrement, and report with



VEROMODO, Inc. FINAL REPORT FA9550-04-C-0084 21

lower and upper bounds al and a2, respectively, while the second one consists of the action set, with lower and
upper bounds bl and b2, respectively.

The specification of TwoTaskRace below is a well-formed TIOA-sim program. The variable now is the
single non-discrete variable of type Real. There are two trajectory definitions preset and postset, each of
which has an evolve clause with d (now) = 1 and the stopping conditions are of the required form. In stopping
conditions now is compared to variables of type discrete Real.

automaton TwoTaskRace (al, a2, bl, b2 : Real)
signature

internal increment, decrement, set
output report

states
count: Nat 0,
flag: Bool :- false,
reported: Bool : false,
now: Real :- 0,
firstmain: DiscreteReal := al,
lastmain: discrete AugmentedReal :- a2,
firstset: discrete AugmentedReal :- bl,
lastset: discrete AugmentedReal :- b2

transitions

internal increment internal decrement
pre ýflag A now > firstmain pre flag A count > 0 A now > firstmain

p -n eff count := count - 1;
eff count := count + ; firstmain : now + al;

firstmain := now + al; lastmain := now + a2
lastmain := now + a2 output reportinternal setouptrot

pre rflag A now > firstset pre flag A count = 0 A -reported
e -A now > firstmain

eff flag := true; eff reported := true;
firstset := 0; firstmain := 0;
lastset infty lastmain :- infty

•trajectories

trajdef preset
invariant -flag
stop when now = lastmain V now = lastset
evolve d(now) = 1

trajdef postset
invariant flag
stop when now = lastmain
evolve d(now) = 1

4.4 Resolving Nondeterminism

There are three main sources of nondeterminism in TIOA: (1) the scheduling of actions (2) scheduling of trajec-
tories, and (3) nondeterministic choices involving choose statements, choose parameters and choose expressions
in initial assignments.

The nondeterminism resolution approach adopted by the TIOA simulator is to assign a program, called an
NDR program, to each source of nondeterminism in an automaton. To aid the simulator in resolving nondeter-
minism a user is required to augment the automaton specification with a schedule block and det blocks each of
which embodies an NDR program. A program in a schedule or a det block is used respectively for resolving
automaton transitions, specifying the type and duration of trajectories and for resolving the values of a choose
statement.
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The NDR language for TIOA-sim is formally specified in Appendix C.2. Informally, an NDR program
consists of loop (while) statements, conditionals (if), assignments, as well as statements that allow firing discrete
transitions (fire) and continuous trajectories (follow).

Example 4.2 The following is a sample schedule block for simulating TwoTaskrace from Example 4.1. It
chooses a time period at random from an interval determined by the minimum of the first variables and the
maximum of the last variables. The follow traj ectory statements cause the simulator to follow a trajectory
defined by the trajectory definition preset if flag equals false and postset otherwise, for a time period
defined by passTime. After allowing time to pass, an enabled action is chosen and fired. This sequence of
events is iterated until the simulator reaches the maximum number of steps it is instructed to run for.

schedule

states
passTime: Real, first: Real, last: Real

do
while true do

first := min(firstmain,firstset); last := min(lastmain, lastset);
passTime := now - randomReal(first,last);
if -iflag then

follow trajectory preset for passTime
else

follow trajectory postset for passTime
fi;
if -flag A now > firstmain then

fire internal increment
elseif --flag A now > firstset then

fire internal set
elseif flag A count > 0 A now > firstmain then

fire internal decrement
elseif flag A count - 0 A reported A now > firstmain then

fire output report
fi

od
od

4.5 Paired simulations

The TIOA simulator offers paired simulations to help users check whether an automaton A implements an au-
tomaton B that is typically specified at a higher level of abstraction. We refer to A and B as the low-level
automaton and the high-level automaton respectively. Users present the paired simulator with descriptions of
two automata, a candidate simulation relation, and a mapping, called a step correspondence, from the actions of
the lower-level automaton A to sequences of actions of the higher-level automaton B, and from trajectories of
A to sequences of trajectories of B. The simulator runs the low-level automaton A, checks whether the trace of
the high-level automaton B induced by the step correspondence is identical to that of A, and checks whether the
candidate simulation relation holds throughout the simulated executions.

A step correspondence needs to specify, for a given low-level transition or trajectory, a high-level execution
fragment with the same trace such that the simulation relation holds between the respective final states of the
transition or trajectory and the execution fragment. Thus, a step correspondence can be seen as an "attempted
proof' of the simulation relation, missing only the reasoning that shows that the simulation relation is preserved.
The NDR extensions to TIOA-sim (see Appendix C.3) allow the use of proof blocks to specify the proposed
proof of a simulation relation. A proof block contains one entry for each possible transition definition in the
low-level automaton, and one entry for each possible trajectory in the low-level automaton. Each entry encodes
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an algorithm for producing a high-level execution fragment, using a program similar to the NDR programs used
in automaton schedule blocks. In addition to these entries, the proof block also contains a start section, which
specifies how to set the variables of the high level automaton given the initial state of the low-level automaton,
and an optional states section that declares auxiliary variables used by the step correspondence.

Example 4.3 Suppose that we want to prove lower and upper time bounds for the occurence of a report action
of TwoTaskRace automaton from Example 4.1. A common method for doing such a proof is to define a new
automaton that specifies the property that the report action occurs within the time bounds we want to prove and
then exhibit a simulation relation from TwoTaskRace to this new automaton. This new automaton is typically
specified at a higher-level of abstraction than TwoTaskRace such that it just captures the time bounds. The
automaton TwoTaskRaceSpec given below is a high-level automaton that we can use in our proof.

automaton TwoTaskRaceSpec (al, a2, bl, b2: Real)
signature

output report
states

reported: Bool := false,
now: Real := 0,
firstreport: discrete Real := al, % assuming a2 > bl
lastreport: discrete AugmentedReal : b2 + a2 + b2 * a2 / al

transitions
output report

pre -reported A now > firstreport
eff reported := true;

firstreport := 0;
lastreport :- infty

trajectories
trajdef prereport

invariant -reported
stop when now = lastreport
evolve d(now) = 1

trajdef postreport
invariant reported
evolve d(now) = 1

We can use the paired simulation feature of the TIOA simulator to increase our confidence that TwoTaskRace
implements TwoTaskRaceSpec before attempting to do the proof. In particular, we can do this by checking for
a specified finite number of steps the validity of a candidate forward simulation relation from TwoTaskRace to
TwoTaskRaceSpec.

4.5.1 Simulation relations

A simulation relation in TIOA is a predicate on the state variables of two automata.

Example 4.4 In the code below, we specify a forward simulation from the implementation automaton (TTR) to
the specification one (TTRSpec).

forward simulation from TTR to TTRSpec:

TTRSpec.now = TTR.now A
TTRSpec.reported = TTR.reported A
-TTR.flag A (TTR.lastmain < TTR.firstset)

TTRSpec. firstreport <
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min(TTR.firstset, TTR.firstmain) + TTR.count +
((TTR.firstset - TTR.lastmain) / a2) * al A

TTR.flag V (TTR.lastmain > TTR.firstset) =>

TTRSpec.firstreport < TTR.firstmain + TTR.count * al A
-TTR.flag A (TTR.firstmain < TTR.lastset)

TTRSpec.lastreport > TTR.lastset +
(TTR.count + 2 + (TTR.lastset - TTR.firstmain)/al)*a2 A

(-nTTR.reported A (TTR.flag V (TTR.firstmain > TTR.lastset)))
TTRSpec.lastreport > TTR.lastmain + TTR.count * a2

4.5.2 Proof blocks

The language of proof blocks in TIOA can be used to specify, for each fire and follow statements in the low-level
automaton, a corresponding execution fragment in the high-level automaton. A fire statement can be matched by
a sequence of fire statements, while a follow statement can be matched by a sequence of statements containing
both follow statements and fire statements of actions of type internal.

Example 4.5 The proof block below specifies a step correspondence for the report action as well as the
preset and postset trajectories.

proof
for output report do

fire output report
od

for trajectory preset duration x do
if (reported)

follow pre report duration x
else

follow post report duration x
fi

od

for trajectory postset duration x do
if (reported)

follow pre report duration x
else

follow post report duration x
fi

od

4.5.3 User interface and visualization

We have performed exploratory work on the TIOA simulator to enhance the usability of the tools by providing
an effective graphical user interface and the ability to visualize simulation.

The TIOA simulator provides a programmatic interface for both a Text User Interface and a Graphical User
Interface. In Phase I we fully implemented the Text User Interface and we experimented with a Graphical User
Interface. We prototyped a connection of the simulator to the Eclipse integrated development environment.
This proof-of-concept implementation enables the user to run the simulator as an "external tool" on an open IL
(Intermediate Language) file produced by the front end. The output will appear in the Eclipse console. A preview
of the this interface through the Eclipse platform is shown in Figure 4.5.3
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a SEND(message, i, j) action occurs, for example, message can be seen leaving node i and being stored in the
buffer of the channel connecting nodes i and j. When a leader is elected, the node changes color. A view of the
tool is shown in Figure 8.

5 TIOA and Theorem-Proving Tools

The TIOA model provides a precise and expressive linguistic framework for developing specifications for a broad
class of systems. Earlier experiences [57, 66, 84] with timed and hybrid automata indicate that inductive verifi-
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Figure 9: A graphical tool for designing visualizations

cation of moderately complex systems calls for considerable time and effort. A theorem prover can significantly

reduce the human effort involved in the verification process, and it can also improve the quality of the proofs by

(1) automatically resolving many of the simpler proof goals, (2) allowing proof reuse, and (3) managing and or-

ganizing large unwieldy proofs. In Phase I we developed a TIOA interfcfothProypVeicaonSsm

(PVS) [87] developed at SRI. PVS is a general-purpose 
interactive theorem prover for high order logic, and it has

been used to verify a variety of systems, both from the industry and academia [91 ]. The motivation for developing

a TIOA-specific interface for PVS is two fold. First, it will relieve the TIOA users from having to master PVS's

own specification language and its quirks. Second, with a suite of TIOA-specific PVS proof strategies, it will be

possible to limit the human interaction to the essential parts, and also to generate human-readable 
proofs.

The key technique used for the analysis of TIOA models is deduction. It is therefore desirable to be able to reason

about timed 1/0 automata using interactive theorem provers because: (1) modem theorem provers can efficiently

manage large proofs, and (2) it is possible to automate proofs of recurring proof patterns by writing theorem-

prover macros or strategies. A cost one has to bear for using a theorem prover is that of writing the description of

the TIOA model of the system in yet another language, i.e., the language of the prover, which is typically some

variant of higher order logic. In Phase I of the project, we prototyped a tool that automatically translates system

descriptions written in the TIOA language to PVS theories. We have used the translator, called tiola2pvs, in

three verification case studies to produce PVS theories from TIOA descriptions, and have successfully used PVS

to prove interesting properties of the systems under study.

Written in Java, the translator builds upon the existing IOA to Larch translator [8]. It first uses the TIOA

front-end type checker to parse the input TIOA, reporting any errors if necessary (see Figure 10). The translator

then generates a set of files containing PVS theories specifying the automata and their properties. The user can

then invoke the PVS theorem prover to interactively prove these properties.

Our approach for translating TIOA to PVS is based on the methodology described in the Timed Automata Mod-

eling Environment (TAME) [2, 3]. The translator automatically instantiates the TAME template with the states,

actions and transitions of the input timed 1/0 automaton written in TIOA. This instantiated theory, together with

several supporting library theories, completely specifies the automaton, its transitions and its reachable states in
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the language of PVS.

TIOA file STIOA Toolkit

automaton A InemdaeAdecls.pvs
invariants of A [ ---. t -- -
automaton B Language PVS
invariants of B A|invnxints.pvs
forward simulation
from A to B

B-decls.pvs

(E.g. Simulator) B

A2B.pvs

TIOA Library

timepvs imed-automaton.pva

timeLthy.pvs forwardsimulation.pvs

prvs-strategies

time nebmu~pvoauto induct

Figure 10: Theorem proving on TIOA specifications

There is an important distinction between the automaton model for which TAME was designed and the timed
1/0 automaton model. Elapsing of time in a TAME automaton is captured by a special time-passage action
that increments a special now variable, whereas in the more general timed I/O automaton model, the executions
contain trajectories that map intervals of time to values of continuously changing variables. To translate these
trajectory definitions to PVS, we add a set of parameterized actions that contain the trajectory map as a parameter.
The precondition of these actions enforces the trajectory invariants and the stopping conditions, while the effect
of these actions returns the last state of a trajectory.

The TIOA language allows explicit nondeterminism within transitions of actions using the choose statement,
and within trajectories as differential inclusions. We convert this form of explicit nondeterminism in the TIOA
language into implicit nondeterminism in PVS by introducing additional action parameters for the variables with
nondeterministic values. The precondition of these actions requires that these additional parameters have values
allowed by the nondeterministic choice specified in the TIOA description.

We next describe in more detail the translation of the various components of a TIOA description.

5.2.1 Data types

Primitive data types of the TIOA language (e.g. Bool, Char, Int, Nat, Real, String) have their equivalents in
PVS, which also supports declaration of enumeration, unions, arrays and tuples in its own syntax. The TIOA
language introduces the type AugmentedReal, which is the type Real extended with a constructor for infinity.
AugmentedReal is translated to the PVS type time introduced in the time theory of TAME.

The TIOA language allows use of user-defined types and operators by requiring the user to declare the types
and the signature of the operators within the TIOA description. This feature allows the user to use existing PVS
theories and data structures without having to rewrite them in TIOA. The user can also use command-line flags
to specify the location of the files containing the PVS definitions, so that the output of the translator imports
these definitions accordingly. Timedqueue is an example of a user-defined type, which is used in the failure-
detection case study. The TIOA description declares this type and its operators, like addqueue, delqueue,
and uses this type and these operators in the automaton description. The semantics of these user-defined types and
operators are written as a PVS library theory along with the required properties of addqueue and delqueue.
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The translator associates the TIOA types with the corresponding library theory (if there exists one) by importing
the relevant theory in the output.

5.2.2 States, actions and transitions

The TIOA language provides the explicit constructs for specifying the state variables, actions and transitions of
an automaton.

PVS state: In PVS, the state component of an automaton is defined as a record containing the various state
variables. A boolean predicate start returns true when a given state satisfies the conditions of a start state.

Actions and preconditions: Individual actions are declared as subtypes of an action data type in PVS.
Preconditions of actions are translated as a combined parameterized predicate on a given action and state. This
predicate returns true when the given action is enabled at the given state.

Transitions: All imperative statements in the effects of transition definitions, including assignment statements
and conditionals, are replaced by a function that returns the poststate when given an action and a prestate as
parameters.

5.2.3 Trajectories

To translate trajectory definitions to PVS, we add a set of parameterized actions that contain the trajectory map
as a parameter. The precondition of these actions enforces the trajectory invariants, the stopping conditions, and
the evolution of time-valued variables. The effect of these actions returns the last state of a trajectory by applying
the trajectory map to a given time interval. The current implementation of the translator handles only constant
differential equations and inclusions of the form d(x) = k or k, <_ d(x) <_ k2.

5.2.4 Invariants and simulation relations

The translator supports translation of invariants and simulation relations written in a TIOA description. Separate
PVS theory files are generated for the automaton specifications, the invariants and the simulation relations. An
invariant in TIOA is translated to a lemma in PVS specifying that if a state is reachable, then the condition of the
invariant holds in the state.

For describing simulation relations in PVS, TAME provides an automaton theory template and a forward
simulation theory template. The automaton theory template specifies the generic structure of an automaton. The
forward theory simulation template accepts the following as parameters: two instances of the automaton theory
template, a function mapping actions of the first automaton to actions of the second automaton, and a predicate
describing the relation among the state variables of the two automata. The forward simulation theory template
defines a forward simulation from one automaton to the other in terms of these input parameters. Our translator
outputs the desired simulation relation by instantiating this forward simulation theory template with the theory
interpretations of the abstract and concrete automata, an action map and the relation among the state variables of
the two automata.

5.2.5 Auxiliary functions

The TIOA language allows function declarations as a means of convenience and usability. The user can declare
a derived variable whose value is a function of other state variables, or a macro-style function for shorthand, or a
function involving mathematical expressions. Functions can be declared at the top level of a TIOA description,
or within various components of an automaton.

Top level auxiliary functions are translated into top level functions in PVS with minimal syntax modifica-
tions. In a TIOA description, auxiliary functions declared within an automaton can be used in the preconditions
and transitions of actions as well as in trajectories. In PVS, the preconditions are translated as a predicate pa-
rameterized on an action and a state, separately from the transitions, which are translated as functions that return
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the poststate given by an action and a prestate as parameters. The translator outputs a function declared within
an automaton as a top level function in PVS so that it can be used in both the precondition and transition compo-
nents in PVS. In PVS, these top level functions have additional parameters for accessing the state variables and
the action parameters.

5.2.6 Auxiliary rewrite rules

The translator automatically generates PVS theories containing auxiliary lemmas that can be used as rewrite
rules. These auxiliary rewrite rules can be used in proofs of other lemmas. The proof obligations of these
auxiliary rewrite rules are easily discharged using TAME strategies. The translator also automatically generates
the proof scripts for these lemmas. The user just has to run the generated proof scripts in PVS to complete these
proof obligations.

5.3 Translation case studies

We have used the translator successfully in the following three verification case studies: (1) the Fischer mutual
exclusion algorithm, (2) a two-task race system, and (3) a simple failure detector. In all these case studies, the
input to the translator is a TIOA description of the system/algorithm in question and its invariant properties. For
2 and 3 we also have an abstract TIOA specification of the timing properties of the system. The output from the
translator is a set of PVS theories specifying the timed 1/0 automata and their invariant properties. We have used
the PVS theorem prover to verify the properties using inductive invariant proofs and simulation relations.

See Section 6 and the appendices for selected information and specifications.

5.4 Use of strategies in PVS

In the proofs of invariants in the case studies, we used high-level PVS strategies developed for TAME. These
strategies are similar to ones we developed in earlier case studies for untimed automata, in which we used the
Larch Prover instead of PVS. The strategy auto-induct is used in invariant proofs at the top level for applying
induction over the number of steps of execution. Resulting branches correspond to the base case of the induction
and the case splits for various actions in the induction step. Using this strategy, trivial branches are immediately
discharged. Within a branch corresponding to an action step, the user can invoke apply-specific-precond
to obtain the precondition assertion for use in the proof. The try-simp strategy attempts to discharge straight-
forward proof obligations. For branches involving time passage actions corresponding to TIOA trajectories, the
strategy deadl ine-check examines the stopping condition of the trajectory and provides an appropriate time
interval for instantiating a trajectory map.

6 Case Studies and Usage Patterns

In Phase I we developed several examples that illustrate and test the use of the prototype tools.

Fischer mutual exclusion example

We developed a TIOA specification for the Fischer mutual exclusion (mutex) algorithm (as given in [42]). The
specification was processed and type-checked by the front end. The front end generated an intermediate output
file that was used by the tioa2pvs translator to generate the PVS specifications that were then used to prove
the mutual exclusion property. The complete presentation and the listings of the files is given in Appendix A. We
have also simulated executions of the TIOA specification.
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TwoTaskRace example

In the two-task race system, we studied a simple timed specification where one automaton increments a counter
until it is interrupted by an action setting the counter. Thereafter, the automaton decrements the counter and
reports when it reaches 0. To prove that the report occurs within a certain time bound, we create an abstract
automaton that simply performs a report action within the required time bounds. We then prove a forward simu-

lation relation from the concrete automaton to the abstract automaton, thus showing that the timing requirements
are met. The detailes of this example can be found in Appendix B.

Verification of the SATS

We have also considered a model for the Small Aircraft Transportation System (SATS), a system for landing
aircraft in small and medium airports currently being studied as a joint project of NASA and several universities.
Our study on this model is based on the work of Cesar Munoz in National Institute of Aerospace (NIA), and
his colleagues [19], on which a mathematical model for the system was presented. They modeled the system
by discretizing the space of the airport into several zones represented as queues of aircraft, and under such a
discrete system model, some interesting properties of the system are proved by a state exploration method using
a mechanical theorem prover PVS. These properties include the bounds on the number of aircraft in a specific
zone of the system and the number of simultaneous operations of the aircrafts.

One objective for us to conduct research on this model is to see if we can prove the properties presented
in the paper by means of a standard invariant-proof technique using tools, techniques, and experiences we have
used from earlier examples. We chose some properties from the original work and developed a revised PVS
specification from the original model (revised so that it becomes more handy for invariant-style proofs, without
the changes in the semantics.)

The difficulties are in having auxiliary lemmas to make the inductive proofs go through, as opposed to the
state exploration method, which will explore the entire state spaces to directly check the properties. We developed
such lemmas and now working on the proof of them in PVS.

The experience gained in this case study will be used in Phase II for developing proof strategies that can be
used to help automate the theorem-proving process. We have also been able to use the translator to translate the
original TIOA specification to PVS and we believe this resulting specification can be verified with greater ease
once the strategies are in place.

7 Conclusions and Future Work

We have completed Phase I project having demonstrated the feasibility of implementing a framework for model-
ing and analyzing complex distributed systems. We developed a detailed design of a modeling language, TIOA,
that includes event ordering behavior and timing behavior. We developed an implementation of a front end for
this language, together with prototype tools to support simulation (including simulation at multiple levels of ab-
straction). We developed a translator from TIOA to PVS and demonstrated the feasibility of prooding invariants
and abstraction relationships of TIOA-specified systems using PVS. We developed examples that demonstrate
the use of the tools. We explored ease-of-use features in the framework that include a graphical user interface
and an approach to user-defined visualizations.

We are now poised to transition the project to Phase II in which we will complete this development and
implement production-grade, well-integrated computer-aided tools that together will comprise a user-oriented
framework for modeling and analyzing complex distributed systems. Our proposed Phase II work for the next
two years is overviewed in Appendix D.
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A Fischer Mutex Specifications

This appendix contains the four files for the Fischer Mutex examples.

1. fischer-me.tioa: The file used is TIOA specification of the mutex used as the input to TIOAtoPVS trans-
lator. It contains the statement of the invariants as well as the description of the automaton. The translator
automatically outputs the pvs file for automata and invariants.

2. fischer-me-decls.pvs: The declaration of the automaton in PVS. It was automatically generated by the
translator.

3. fischer.meinvariants.pvs: Invariants we want to prove in PVS. It was also automatically generated by
the translator.

4. commondecls.pvs: This file was automatically generated by the translator. In this example, this file
just imports other definitions needed in fischer-me-decls.pvs, for example, the definition of time. fis-
cher-me-decls.pvs imports this file.

In this example fischer-me.tioa was type-checked, and went through translator. It generated three files,
common decls.pvs, fischer-me-decls.pvs, and fischer-me-invariants.pvs. All proofs for fischer-me-invariants.pvs
were done in PVS.

Fischer Mutual Exclusion algorithm is an asynchronous single register mutex algorithm. We took the defini-
tion of the algorithm from example 4.5 in [42]. This composite version includes task bounds that are deadlines
for the earliest and the latest time a transition can take place.

In more detail, the algorithm implements mutual exclusion through the use of timing constraints. Some
of the transitions, such as tryi, testi , criti, exiti, reseti and remi just change the program counter and are
not influenced by the timing constraints. However, once a process checks for the quiescent value of a shared
turn variable x = 0 and enters a set state it assumes that it can proceed to the critical section. Imagine if several
processes entered their set states simultaneously. Now all of the processes are expecting a seti action to occur, so
they could proceed by setting x = i and then perform checki action and end up in the critical section. This might
lead to a bad interleaving if processes' seti and checki actions take place sequentially so that each one ends up in
the critical section. In order to avoid this bad interleaving we need to ensure that all the processes that performed
testi action successfully will perform seti before any process can perform checki. This is done through setting
last-main(i) := now + u-main when a process successfully completes the texti action. This then sets the
deadline for the seti action to complete. It is ensured through the stopping condition of the trajectory. When a
seti action takes place, along with changing the turn variable value we also set first-check(i) := now+L1check.
This is a time constraint for the earliest time a checki action becomes enabled, hence, transition can take place.
Once we ensure that u-main < lcheck we guarantee that there will be no bad interleaving, but rather only the
process last to execute its seti action will proceed to the critical section.

The fischer-me.tioa captures the above algorithm in the TIOA format and is pretty straightforward. The only
ambiguity was using AugmentedReal datatype rather than Real for the last-main(i) since it was supposed to
be set to infinity after the seti action. We also had to explicitly state non negativity, ordering of the bounds and
that u-main < 1-check.
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Having developed fischer-me.tioa we used the tioa2pvs translator which is a part of the TIOA toolkit.
Translation completed in a matter of seconds and produced a set of PVS theories specifying our automaton and
its properties: fishcer-me-decls.pvs, common-decls.pvs, fischer-me-invariants. The first file contained the
description of the automaton with the transitions, actions and constraints. The second file imports the definitions
necessary for the trajectory notion of time and variable now from the TAME libraries. The third file contains a
list of invariants that we had to prove translated from their TIOA equivalents.

The main invariant that states the mutex property is the following: There doesn't exist i and j, i 54 j, such
that pc(i) = pc(j) = pc-crit. However, in order to guarantee mutex we needed an auxiliary property: If a
process i is in critical section then no other process will be able to set the turn variable x, hence, it will retain
value i until the process exits critical section. These two properties guarantee mutual exclusion. However, in
order to prove them successfully we needed to add several other invariants as follows:

1. now and first-check(i) are non negative

2. If an action other than pc-check took place then last-main(i) has the value less or equal to now + umain
(upper bound of main tasks). This imposes the time bound condition.

3. now is always less than last-main(i)

4. If some process i is not in pc-check then its last-main(i) = 00

5. If processes pass test simultaneously then all seti will take place before the first checki

These invariants imply bounds and ordering of different events and induced from the specification. Each
invariant was proved in just several straightforward steps. After these invariants were proved they could be used
explicitly by the verifier during the proof of the two mutex invariants that we were primarily interested in. Since
we proved all the auxiliary invariants that we could have needed it was just a matter of using induction strategy,
referring to proved properties, and grinding through the proof. The details of the proof and the proof tree can be
found in mutex.prf.

A.1 fischer-me.tioa
% Fischer's mutual exclusion algorithm
% Composite version with upper and lower bounds
% Taken from example 4.5 (figure 5 and 6) in [KLSV2004],
% includes task bounds described in section 24.2
% of Distributed Algorithms [Lynch].

% This file contains invariants we want to prove as
% well as the description of the automaton.

% All processes have a positive index, as enforced in
% the invariants as "V (k: Int) ((k > 0) •ý Invariant)"
% and in the preconditions of actions.
% "0" is used as a marker for the variable turn when it
% is not set.

%% type declaration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

type PcValue = enumeration of
pc-rem,
pctest,
pcset,
pc-check,
pc-leavetry,
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pccrit,
pc_leaveexit,
pcreset

%% description of the automata %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

automaton fischer me(lmain, 1_check: Real, u-main, u-check: Real)

signature
output

try(i: Int),
crit(i: Int),
exit(i: Int),
rem(i: Int)

internal
test(i: Int),
set(i: Int),
check(i: Int),
reset(i: Int)

states
turn: Int : 0,
now: Real := 0,
pc: Array[Int, PcValue],
firstmain: Array[Int, Real],
lastmain: Array[Int, AugmentedReal],
firstcheck: Array[Int, Real],
lastcheck: Array[Int, AugmentedReal]

initially

% non negativity
u_main > int2real(0) A
u_check > int2real(0) A
1_main > int2real(O) A
1_check > int2real(O) A

% order
lmain < u main A lcheck < u check A

% condition that set and other actions has to occur before check
u_main < 1_check A

% start states
V i: Int

pc[i] = pcrem A
firstmainfi] = 1_main A
lastmain[i] = u-main A
firstcheck[i] = int2real(0) A
lastcheck[i] = Efty



VEROMODO, Inc. FINAL REPORT FA9550-04-C-0084 40

transitions

output try(i)
pre

pc[i] = Pc-rem A i > 0
eff

pc[i] := pc_test;

internal test(i)
pre

pc[i] = pctest A first main[i] < now A i > 0
eff

if turn = 0 then
pc[i] pc_set;
first-main[i] := now + 1_main;
if ((now + u-main) _Ž int2real(0)) then

last-main[i] := real2augmented(now + umain);
fi

fi

internal set(i)
pre

pc[i] pcset A firstmain[i] < now A i > 0
eff

turn i;
pc[i] pc_check;
firstmain[i] := 0;
lastmain[i] := efty;
firstcheck[i] := now + 1_check;
if ((now + ucheck) _> int2real(O)) then

last check[i] real2augmented(now + u_check);
fi

internal check(i)
pre

pc[i] = pc-check A first_check[i] < now A i > 0
eff

if turn i i then
pc[i] pcleavetry;

else
pc[i] pc_test;

fi;
firstmain[i] now + lmain;
first_check[i] 0;
last_check[iJ Efty;
if ((now + umain) _> int2real(0)) then

last main[i] := real2augmented(now + u-main);
fi

output crit(i)
pre

pc[i] = pc_leavetry A firstmain[i] < now A i > 0
eff

pc[i] := pc-crit;
first main[i] := now + ljmain;
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if ((now + u_main) > int2real(O)) then
last main[i] := real2augmented(now + u-main);

fi

output exit (i)
pre

pc[i] = pc-crit A i > 0
eff

pc[i] := pcreset;

internal reset(i)
pre

pc[i] = pc-reset A firstmain[i] < now A i > 0
eff

first main[i] := now + lmain;
pc[i] : pcleaveexit;
turn :- 0;
if ((now + umain) Ž int2real(0)) then

last-main[i] := real2augmented(now + u-main);
fi

output rem(i)
pre

pc[i] = pcjleaveexit A first_main[i] < now A i > 0
eff

first main[i] := now + 1_main;
pc[i] := pc_rem;
if ((now + umain) > int2real(0)) then

last main[i] := real2augmented(now + u-main);
fi

trajectories
trajdef traj

stop when
a i:Int

(now > int2real(0) A
(now = last main[i] V
now = last-check[i]))

evolve
d(now)= 1

%%%%%%%%% invariants we want to prove %%%%%%%%%%%%%%%%%%%%%%%%%%%

invariant of fischerme:
% non negativity
u_main > int2real(O) A u-check > int2real(O) A limain > int2real(0)
A 1_check > int2real(0)
A
% order
1_main < u-main A 1_check < u check A
% main and check condition
u_main < 1_check

invariant of fischerme:
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V k:Int (now>int2real(0) A firstcheck[k] > int2real(O))

invariant of fischerme:
V k:Int ((k>0 A (now + umain) > int2real(0) A

pc [k]4pccheck)
S(last-main[k] _(now+umain)))

invariant of fischerme:
V k:Int ((k>0 A now > int2real(0)

Sý(now<last-main[k]))

invariant of fischer_me:
V k:Int ((k>0 A now > int2real(0) A pc[k] 5 pc-check)

=> (last-main[k] :L Efty))

invariant of fischerme:
V i: Int V j: Int

(i > 0 A j > 0 A first_check[i] > int2real(0) A
pc[i] = pccheck A

turn i A
pc[j] = pc-set)

=> (first-check[i]>lastmain[j]))

invariant of fischerme:

V i:Int V j: Int (
((i > 0 A j > 0) A
(pc[i] = pc_leavetry V
pc[i] = pccrit V

pc[i] = pcreset))
S(turn--i A pc[j]#pcset))

invariant of fischerme:
V i: Int V j: Int (

(i > 0 A j > 0 A i # j)
S((pc[i] $ pccrit) V (pc[j] = pc-crit)))

A.2 fischerimendecls.pvs

%% fischerme decls.pvs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This file is generated by the TIOAtoPVS translator.
%% It contains a description of the automaton for Fischer Mutex.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fischer me-decls : THEORY
BEGIN

IMPORTING commondecls

% Automaton formal parameters
1_main: real
1_check: real
u_main: real
u_check: real
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% Tuples, Enums and Unions
PcValue : TYPE = {pc-rem, pc-test, pc-set, pc-check, pc-leavetry, pc-crit,

pcjleaveexit, pc-reset}

% States variables declarations
states: TYPE = (#

turn: int,
now: real,
pc: array[int -> PcValue],
firstmain: array[int -> real],

last-main: arrayfint -> time],
firstcheck: array[int -> real],
lastcheck: array[int -> time]

#]

% Start state definition
start (s:states):bool = (LAMBDA(s: states):

turn(s) = 0 AND
now(s) = 0 AND
((((((((u-main >= 0) AND (ucheck >= 0)) AND (ljmain >= 0)) AND (1_check > 0))

AND (1lmain <= u_main)) AND (1_check <= ucheck)) AND (umain < lcheck))
AND FORALL(i: int) : ((((((pc(s)(i) = pc-rem) AND (firstmain(s)(i) = lUmain))
AND (last-main(s) (i) = fintime(u main))) AND (firstcheck(s) (i) = 0))
AND (last-check(s) (i) = infinity))))

)(s);

% Action declarations
interval(i, j: (fintime?)): TYPE = {s: (fintime?) I i <= s AND s <= j AND i <= j)
f_type(i, j: (fintime?)): TYPE = [interval(i, j)->states]

% actions signatures
actions: DATATYPE
BEGIN

nutraj(deltat: {t: (fintime?) I dur(t)>=0}, F:ftype(zero, deltat)): nu_traj?
try(i: int) : try?
crit(i: int) : crit?
exit(i: int) : exit?
rem(i: int) : rem?
test(i: int) : test?
set(i: int) : set?
check(i: int) : check?
reset(i: int) : reset?

END actions

% actions visibility
visible(a:actions): bool =
CASES a OF

nutraj(deltat, F): true,
try(i) : true,
crit(i) : true,
exit(i) : true,
rem(i) : true,
test(i) : false,
set(i) : false,
check(i) : false,
reset(i) : false
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ENDCASES

% time passage actions
timepassageactions(a:actions): bool =

CASES a OF
nu_traj(deltat, F): true,
try(i) : false,
crit(i) : false,
exit(i) : false,
rem(i) : false,
test(i) : false,
set(i) : false,
check(i) : false,
reset(i) : false

ENDCASES

% Transition definitions
% preconditions
enabled-specific (a:actions, s:states):bool = CASES a OF

nutraj(delta-t, F): FORALL (t:interval(zero,delta-t)):

% Stop condition
((EXISTS(i: int) : (((now(F(t)) >= 0)

AND ((fintime(now(F(t))) = last-main(F(t))(i))
OR (fintime(now(F(t))) = last-check(F(t))(i)))))

) IMPLIES t = deltat) AND

% Evolve predicate
F(t) = s WITH [

now := now(s) + 1 * dur(t)],

try(i):
((pc(s)(i) = pcrem) AND (i > 0)),

crit(i):
(((pc(s)(i) = pc_leavetry) AND (first main(s) (i) <= now(s))) AND (i > 0)),

exit(i):
((pc(s) (i) = pc crit) AND (i > 0)),

rem(i):
(((pc(s)(i) = pc-leaveexit) AND (first main(s)(i) <= now(s))) AND (i > 0)),

test(i):
(((pc(s)(i) = pc-test) AND (firstmain(s) (i) <= now(s))) AND (i > 0)),

set(i):
(((pc(s)(i) = pcset) AND (firstmain(s) (i) <= now(s))) AND (i > 0)),

check(i):
(((pc(s)(i) = pc-check) AND (firstcheck(s)(i) <= now(s))) AND (i > 0)),

reset(i):
(((pc(s)(i) = pc-reset) AND (first-main(s)(i) <= now(s))) AND (i > 0))

ENDCASES
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enabled (a:actions, s:states) :bool = enabledtspecific(a,s)

% effects
% transitions effects using substitution
trans (a:actions, s:states):states = CASES a OF

nu_traj(deltat, F): F(deltat),

try(i):
s WITH

PC :=
(pc(s) WITH [(i) := pc_test])

crit(i):
s WITH

firstmain
(first main(s) WITH [(i) := (now(s) + lmain)]),

pc :=
(pc(s) WITH [(i) := pccrit]),

lastmain
(IF ((now(s) + u-main) >= 0) THEN

(last main(s) WITH [(i) := fintime(now(s) + u-main)])
ELSE

last main(s)
ENDIF

],

exit(i):
s WITH

pc :=
(pc(s) WITH [(i) := pcreset])

1,

rem(i):
s WITH

first_main
(first main(s) WITH [(i) := (now(s) + lmain)]),

pc
(pc(s) WITH [(i) := pcrem]),

last_main
(IF ((now(s) + u-main) >= 0) THEN

(last-main(s) WITH [(i) := fintime(now(s) + u-main)])
ELSE

last-main(s)
ENDIF

test(i):
s WITH

first_main
(IF (turn(s) = 0) THEN

(first main(s) WITH [(i) := (now(s) + lmain)])
ELSE

first-main(s)
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ENDIF ),

(IF (turn(s) = 0) THEN
(pc(s) WITH [(i) := pc-set])

ELSE
PC(s)

ENDIF ),

lastmain
(IF (turn(s) = 0) THEN

(IF ((now(s) + u_main) >= 0) THEN
(last-main(s) WITH [(i) := fintime(now(s) + u-main)])

ELSE
lastmain(s)

ENDIF
ELSE

last main(s)
ENDIF

set(i):
s WITH

lastcheck
(IF ((now(s) + u-check) >= 0) THEN

(last_check(s) WITH [(i) := fintime(now(s) + u-check)])
ELSE

las tcheck (s)
ENDIF ),

firstcheck
(firstcheck(s) WITH [(i) (now(s) + !_check)]),

firstmain :=
(firstmain(s) WITH [(i) 0]),

pc :=
(pc(s) WITH [(i) := pc_check]),

turn

last_main
(lastmain(s) WITH [(i) := infinity])

check(i):
s WITH

lastcheck
(last-check(s) WITH [(i) := infinity]),

firstcheck
(firstcheck(s) WITH [(i) 0]),

firstmain :=
(first-main(s) WITH [(i) := (now(s) + ltmain)]),

pc :=
(IF (turn(s) = i) THEN

(pc(s) WITH [(i) := pcleavetry])
ELSE



VEROMODO, Inc. FINAL REPORT FA9550-04-C-0084 47

(pc(s) WITH [(i) pctest])
ENDIF ),

last_main
(IF ((now(s) + u-main) >= 0) THEN

(lastmain(s) WITH [(i) := fintime(now(s) + u-main)])
ELSE

last main(s)
ENDIF

],

reset(i):
s WITH[

firstmain
(first main(s) WITH [(i) := (now(s) + limain)]),

pC :=
(pc(s) WITH [(i) := pc_leaveexit]),

turn := 0,

lastmain
(IF ((now(s) + u-main) >= 0) THEN

(last-main(s) WITH [(i) := fintime(now(s) + u-main)])
ELSE

last-main(s)
ENDIF

ENDCASES

% effects
% transitions effects using LET
trans2 (a:actions, s:states):states = CASES a OF

nu_traj(delta-t, F): F(deltat),

try(i):
(LET s:states = s WITH [pc := pc(s) WITH [(i) := Pc-test]] IN s),

crit(i):
(LET s:states = s WITH [pc := pc(s) WITH [(i) := pccrit]] IN
(LET s:states = s WITH [firstmain := first_main(s)

WITH [(i) := (now(s) + 1_main)]] IN
(LET s:states =

IF ((now(s) + u-main) >= 0) THEN
(LET s:states = s WITH [lastmain := lastmain(s)

WITH [(i) := fintime(now(s) + usmain)]] IN s)
ELSE s
ENDIF

IN s))),

exit(i):
(LET s:states = s WITH [pc := pc(s) WITH [(i) := pcreset]] IN s),

rem(i):
(LET s:states = s WITH [first_main := first_main(s) WITH [(i) := (now(s) + lUmain)]] IN
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(LET s:states = s WITH [pc pc(s) WITH [(i) pcrem]] IN

(LET s:states =
IF ((now(s) + u-main) >= 0) THEN

(LET s:states = s WITH [lastmain := lastmain(s)

WITH [(i) := fintime(now(s) + u-main)]] IN s)
ELSE s
ENDIF

IN s))),

test(i):
(LET s:states =

IF (turn(s) = 0) THEN
(LET s:states = s WITH [pc := pc(s) WITH [(i) := pc_set]] IN
(LET s:states = s WITH [firstmain := first main(s)

WITH [(i) := (now(s) + l-main)]] IN
(LET s:states =

IF ((now(s) + u-main) >= 0) THEN
(LET s:states = s WITH [last-main := last main(s)

WITH [(i) := fintime(now(s) + u-main)]] IN s)
ELSE s
ENDIF

IN s)))
ELSE s
ENDIF

IN s),

set(i):
(LET s:states = s WITH [turn := i] IN

(LET s:states = s WITH [pc := pc(s) WITH [(i) := pccheck]] IN
(LET s:states = s WITH [firstmain := firstmain(s) WITH [(i) := 0]] IN
(LET s:states = s WITH [last-main := last-main(s) WITH [(i) := infinity]] IN
(LET s:states = s WITH [first_check := first_check(s) WITH [(i) := (now(s) + 1_check)]] IN
(LET s:states =

IF ((now(s) + u-check) >= 0) THEN
(LET s:states = s WITH [lastcheck := lastcheck(s)

WITH [(i) := fintime(now(s) + ucheck)]] IN s)
ELSE s
ENDIF

IN s)))))),

check(i):

(LET s:states =
IF (turn(s) = i) THEN

(LET s:states = s WITH [pc pc(s) WITH [(i) pc_leavetry]] IN s)

ELSE
(LET s:states = s WITH [pc pc(s) WITH [(i) pctest]] IN s)

ENDIF
IN
(LET s:states = s WITH [firstmain := firstmain(s)

WITH [(i) := (now(s) + lmain)]] IN
(LET s:states = s WITH [firstcheck := first_check(s) WITH [(i) := 0]] IN
(LET s:states = s WITH [lastcheck last_check(s) WITH [(i) := infinity]] IN
(LET s:states =

IF ((now(s) + u-main) >= 0) THEN
(LET s:states = s WITH [lastmain := lastmain(s)

WITH [(i) := fintime(now(s) + u_main)]] IN s)
ELSE s
ENDIF

IN s))))),
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reset(i):
(LET s:states = s WITH [firstmain := firstmain(s)

WITH [(i) := (now(s) + lmain)]] IN
(LET s:states = s WITH [pc := pc(s) WITH [(i) := pc-leaveexit]] IN
(LET s:states = s WITH [turn := 0] IN
(LET s:states =

IF ((now(s) + u-main) >= 0) THEN
(LET s:states = s WITH [last_main := lastmain(s)

WITH [(i) := fintime(now(s) + u-main)]] IN s)
ELSE s
ENDIF

IN s))))

ENDCASES

% Import statements
IMPORTING timedautolib@timemachine[states, actions, enabled, trans, start,

visible, timepassageactions,
(lambda(a:({x:actionsjtimepassageactions(x)})): dur(delta-t(a)))]

END fischer-me decls

A.3 fischer-meinvariants.pvs

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Invariants for automaton fischerme
%% This file is automatically generated by the TIOAtoPVS translator.
%% It contains invariants to prove the mutex property.
%% lemma 7 states the mutex property.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fischermeinvariants: THEORY

BEGIN

IMPORTING fischer me decls
IMPORTING fischer me-rewriteauxl
IMPORTING fischer me rewriteaux_2
IMPORTING fischermeunique-aux

Inv_0(s:states):bool =
(((((((u-main >= 0) AND (ucheck >= 0)) AND (lmain >= 0)) AND (1_check > 0))

AND (lmain <= umain)) AND (lcheck <= ucheck)) AND (umain < 1_check))

lemma_0: LEMMA (FORALL (s:states): reachable(s) => InvO(s));

Invl(s:states):bool =
FORALL(k: int) : (((now(s) >= 0) AND (firstcheck(s)(k) >= 0)))

lemma-l: LEMMA (FORALL (s:states): reachable(s) => Inv_l(s));

Inv_2(s:states):bool =
FORALL(k: int) : (((((k > 0) AND ((now(s) + u-main) >= 0)) AND (pc(s)(k) /= pccheck))

=> (last main(s) (k) <= fintime(now(s) + u-main))))

lemma_2: LEMMA (FORALL (s:states): reachable(s) => Inv_2(s));

Inv_3(s:states):bool =
FORALL(k: int) ((((k > 0) AND (now(s) >= 0)) => (fintime(now(s)) <= last main(s)(k))))
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lemma_3: LEMMA (FORALL (s:states): reachable(s) => Inv_3(s));

Inv_4(s:states):bool =
FORALL(k: int) : (((((k > 0) AND (now(s) >= 0)) AND (pc(s)(k) /= pc-check))

=> (last-main(s) (k) /= infinity)))

lemma_4: LEMMA (FORALL (s:states): reachable(s) => Inv_4(s));

Inv_5(s:states):bool =
FORALL(i: int) : (FORALL(j: int) : ((((((((i > 0) AND (j > 0))

AND (firstcheck(s) (i) >= 0)) AND (pc(s)(i) = pc-check))
AND (turn(s) = i)) AND (pc(s)(j) = pcset))

=> (fintime(firstcheck(s) (i)) > lastmain(s) (j)))))

lemma_5: LEMMA (FORALL (s:states): reachable(s) => Inv_5(s));

Inv_6(s:states):bool =
FORALL(i: int) : (FORALL(j: int) : (((((i > 0) AND (j > 0))

AND (((pc(s)(i) = pcleavetry) OR (pc(s)(i) = pc-crit))
OR (pc(s)(i) = pc-reset)))

=> ((turn(s) = i) AND (pc(s)(j) /= pcset)))))

lemma_6: LEMMA (FORALL (s:states): reachable(s) => Inv_6(s));

Inv_7(s:states):bool =
FORALL(i: int) : (FORALL(j: int) : (((((i > 0) AND (j > 0)) AND (i /= j))

=> ((pc(s) (i) /= pccrit) OR (pc(s) (j) /= pc-crit)))))

lemma_7: LEMMA (FORALL (s:states): reachable(s) => Inv_7(s));

END fischer me invariants

A.4 commondecls.pvs

%% This file just imports the definition needed for fischer me-decls.pvs
%% fischer me decls.pvs imports this file.

common-decls : THEORY
BEGIN

timed auto lib: LIBRARY = ". ./timed auto lib"

IMPORTING timedauto_lib@timethy
IMPORTING timedautolib@listrewrites
IMPORTING timedauto_lib@bool_rewrites

END common_decls

B TwoTaskRace example

In the two-task race system, the automaton TwoTaskRace increments count until it is interrupted by a set
action. Thereafter, it decrements count and reports when count reaches 0. first main and lastmain

records the earliest and latest times when an action in the set {increment, decrement, report} can occur.

firstset and lastset records the earliest and latest times the action set can occur. The preconditions

enforce the start times of each action, while the trajectory definitions enforce the deadlines.

To prove that the report action occurs within a certain time bound, we create an abstract automaton

TwoTaskRaceSpec which simply performs a report action within the time bounds firstreport and
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iTwoTaskRace.reported = TwoTaskRaceSpec.reported A 1 ((reported(sA) = reported(sB)) A
2TwoTaskRace.now = TvoTaskRaceSpec.now A 2 (now(sA) = now(sB))) A
3 (-'TvoTaskRace.flag A TvoTaskRace.last-main < TwoTaskRace .first-set = (
4 TvoTaskRaceSpec.firstreport < (((-, fiag(s.A) A (lastmain(s.A) firstset(s.A)))
5 (min(TvoTaskRace.firstset, TwoTaskRace.first.main) + 4 (first-report(sB) <
6 - ((int2real(TwoTaskRace.count) + min(first-set(sA), first-main(s_^)) +
7 ((TwoTaskRace.firstset - TvoTaskRace.lastmain) / a2)) * ai))) 6 minft(s.A)+ (frstmain(s.A)) +I A (count(sA) + (first~set(sA) -lIast~main(s.A))/a 2) x 01)

S(TwoTaskRace.flag v TvoTaskRace.last_main > TwoTaskRace.firstset 7 A

11 (Tvo0TsaceSpec.first_report (TwoTaskRace.first-main + (int2real(TwoTaskRace.count) * al))) a (((flag(sA) V (last-main(sA) > firstset(sA)))
12 A 9 (first-report(sB) _ first-main(sA) + count(sA) x a,)))
1 (-TvoTaskRace flag A TwoTaskRace.first_main < TwoTaskRace.last-set * o A
14 TwoTaskRaceSpec.last.report >
is (TwoTaskRace.last-set + -i (((-' flag(sA) A (first-main(sA) < lastset(sA))) =
16 ((int2real(TvoTaskace.count + 2) + 12 last-report(sB) >
17 ((TwoTaskRace.lastset - TwoTaskRace.first-main) / al)) * a2))) 13 last-set(sA) +

1iA (-(TwoTaskRace .reported) A 14 (count(sA) + 2 + (last.set(sA) - first_main(sA))/ao) X a2))
20 (TwoTaskRace.flag v TvoTaskRace.first main > TvoTaskRace.lastset) • 15 A
21 TwoTaskRaceSpec last.report >
22 (TWoTaskRace.last~main + (int2real(TwoTaskRace.count) * a2))) 16 (((-, reported(sA) A

17 (flag(sA) V (first-main(sA) > lastset(sA)))) •

1i last-report(sB) > last-main(s.A) + count(sA) X a2))

Figure 11: TIOA and PVS descriptions of the simulation relation

last_report. We then prove a forward simulation relation from the concrete automaton TwoTaskRace to
the abstract automaton TwoTaskRaceSpec. The values of the two time bounds are as follows:

firstreport: Real := IF (a2<bl) THEN min(bl,al) + (((bl-a2)*al)/a2) ELSE al,
lastreport: AugmentedReal := real2augmented(b2 + a2 + ((b2 * a2) / al))

In addition to the concrete automaton TwoTaskRace, we write the abstract automaton TwoTaskRaceSpec,
the invariants of both automata, and the forward simulation relation in TIOA, and obtain the PVS translation
through the translator. Using PVS, we prove the invariants of each automaton, and then prove the simulation
relation. Figure 11 shows the six conjunctions of the simulation relation. In the TIOA code, lines 1-2 asserts that
the variables reported and now are equal in both automata. Lines 3-11 relates the lower bound first_report
while lines 13-22 relates the upper bound lastreport. Figure 11 also shows the PVS code. sA and sB refer
to the state of the concrete and abstract automata respectively.

The proof of the simulation relation involves using induction and performing case splits on the actions and
verifying the inequalities in the relation. The induction hypothesis assumes that a pre-state xA of the concrete
automaton A is related to a pre-state x13 of the abstract automaton B. If the action aA is an external action or a
time passage action, we show the existence of a corresponding action a13 in B such that the a13 is enabled in xL3
and that the post-states obtained by performing aA and a13 are related. If the action aA is internal, we show that
the post-state of aA is related to xL3. To show that two states are related, we prove the six conjunctions in the
relation using invariants of each automaton.

C TIOA Simulator Syntax

C.1 TIOA-sim

The syntax of TIOA-sim is the same as that of TIOA. The restrictions we impose are indicated below:

* Let {vl, ... , vn) be the set state variables of type Real that are not discrete. In each trajectory
definition, the evolve clause consits of a list of n equations
d(vl) = expl ; ... d(vn)= expn
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such that { expl .. ., expn I are constant valued expressions.

a If a stopping condition for a trajectory definition exists then it must be a disjunction of equalities of the
form v=exp where v is a variable of type Real that is not discrete and exp is an expression of type
discrete Real or discrete AugmentedReal. The type constraint ensures that the value of each exp
remains constant throughout a trajectory.

C.2 Syntax for resolving Nondeterminism

Extensions to Primitive Automaton Syntax

simpleBody 'signature' formalActionList+ states
transitions trajectories? tasks? schedule?

schedule 'schedule' states? 'do' NDRProgram 'od'

Extensions to Choice Syntax

choice 'choose' (variable ('where' predicate)?)? choiceNDR?
choiceNDR 'det' 'do' NDRProgram 'od' I NDRYield

NDR Programs

NDRProgram NDRStatement;*
NDRStatement assignment NDRConditional I NDRWhile

NDRYield NDRFire I NDRFollowTraj
NDRConditional 'if' predicate 'then' NDRProgram

('elseif' predicate 'then' NDRProgram)*
('else' NDRProgram)? 'fi'

NDRWhile = 'while' predicate 'do' NDRProgram 'od'
NDRFire = 'fire' actionType actionName actionActuals? transCase?

'fire'
NDRYield = 'yield' term
NDRFollowTraj 'follow trajectory' trajdefName 'duration' term

C.3 Syntax for Paired Simulation

simulation ('forward' I'backward')
simProof 'proof' states? ('start' (ivalue ':=' term);+)?

simProofEntry+
simProofEntry simProofTransEntry I simProofTrajEntry
simProofTransEntry 'for' actionType actionName actionFormals? transCase?

(('do' proofProgram 'od') I 'ignore')
simProofTrajEntry 'for' 'trajectory' trajdefName 'duration' durationVar

(('do' proofProgram 'od') I 'ignore')
proofProgram simProofStatement;+
simProofStatement assignment

I simProofConditional
I simProofWhile
I simProofFire
V simProofFollow

simProofFollow 'follow' trajName '(' term ')'
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D Phase II overview

In this appendix we overview the work envisioned for Phase II of the project.

D.1 Summary of the proposed Phase II project

The results of Phase I show the feasibility of developing a robust, commercial-grade version of the toolset suitable
for modeling and analyzing real distributed systems. In Phase II, we will develop a comprehensive and integrated
design environment supporting the TIOA formalism. Here we briefly identify the Phase II activites. We give the
objectives of the project in more detail in Section D.2.

Three areas of development together constitute the proposed Phase II project:

1. TIOA language and its formal framework: The language specification and the framework for reasoning
about TIOA specifications have been largely developed in Phase I. In Phase II we will finalize this devel-
opment and produce comprehensive user documentation.

2. Computer-aided design tools supporting the development and reasoning about specifications of complex
distributed systems expressed in the TIOA formalism. These robust, end-user oriented computer-aided
design tools will be based on the proof-of-concept implementations developed in Phase I and interface
with other existing tools:

* Front end language processor, tioaCheck, designed to accept the TIOA specification, perform
static and type analysis of the specification, and produce intermediate output for use by other tools.

* The simulator, tioaSim, designed to simulate executions of TIOA specifications and to provide
linked simulations of pairs of specifications, where one specification gives an abstract definition and
the other is a more concrete specification that is supposed to implement the abstract definition.

* A model checking component will be developed by the academic partners Grosu and Smolka at
Stony Brook University. This will extend their independently developed technique of Monte Carlo
model checking to the TIOA implementation problem. The work will involve the translation of
TIOA specifications to the input language of the Open-Kronos model checker for timed automata.
Monte Carlo model checking has already been implemented in Open-Kronos and has demonstrated
significant performance and scalability advantages.

9 Interface to PVS theorem proving. We will implement the translator, called tioa2pvs, based on
the prototype developed in Phase I. The translator accepts output from tioaCheck and produces
native PVS specifications. We will also provide a suite of PVS strategies carefully designed for use
with translated TIOA specifications.

3. Integration, GUI, and usability features:

"* We will integrate the computer-aided tools to provide a development environment for end-users.
"* The environment will include an integrated GUI based on the Eclipse framework (www.eclipse.org).

We will also provide facilities for visual representation of specifications and for graphical represen-
tation of the results, for example, for visualizing simulated executions within tioaSim.

"* We will development a complete set of user documents consisting of reference manuals, user guides,
and documentation of the overall toolset usage patterns.

The project will also include quality-assurance activities that will not have specific corresponding deliver-
ables, but that will be designed to improve the quality and usability of the final product.
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D.2 Phase II Technical Objectives

Here we enumerate the specific Phase II objectives and other existing tools and prior development that form the
basis for Phase II deliverables.

1. The TIOA (timed input/output automata) Language

The TIOA model provides a precise and expressive linguistic framework for developing specifications for
a broad class of systems, including systems that involve distributed, communicating, concurrent, and timed
components. In Phase H are going to formalize the language definition and the mathematical framework
supporting formal reasoning about specifications and algorithms expressed in TIOA.

In Phase I we essentially completed the development of the TIOA language and its mathematical frame-
work. The refinements planned for Phase II will primarily deal with syntactical and packaging issues driven
by the needs of the tools being developed within the project, and improving the language presentation for
its users.

2. Language Front End

The front end makes the mathematical TIOA language suitable for use with computer-aided design tools.
This includes the ability to parse a program specified in TIOA and to represent the semantics of the program
relevant to the computer-aided tools.

In Phase I we developed a fully functional prototype of the front end, called ti oaCheck. Phase H work
will focus on transforming the front end into a robust tool, with substantially improved usability features,
such as integrated GUI and editing facility, and comprehensive diagnostics. We are also going to refine
the output formats produced by the front end to implement better traceability and ease of integration with
other tools.

3. Simulator

A major deliverable of this project is the TIOA language simulator, tioaSim. The simulator serves two
purposes: (1) It allows the users to "run" sample executions of a TIOA program on a single machine; (2) It
allows the users to run paired simulations of two TIOA programs, where a function is provided to map the
states of one program to another.

In Phase I we developed a prototype simulator, which was substantially tested for single automaton sim-
ulation. We have also implemented the paired simulation functionality. Currently we are testing it with
sample automata. Phase II work will focus on (a) making the simulator into a robust end-user system,
(b) adding traceability features, (c) integrating it with the overal GUI framework, and (d) implementing a
visualization strategy allowing the users to develop their own visualizations.

4. Model Checking

Model checking [14, 90], the problem of deciding whether or not a property specified in temporal logic
holds of a system specification, has gained wide acceptance within the hardware and protocol verification
communities, and is witnessing increasing application in the domain of software verification. The beauty of
this technique is that when the state space of the system under investigation is finite-state, model checking
may proceed in a fully automatic, push-button fashion. Moreover, should the system fail to satisfy the
formula, a counter-example trace leading the user to the error state is produced.

Model checking is related to the implementation problem for TIOA, which is the following. Given timed
1/0 automata A and B, representing the implementation and specification of the system under investiga-
tion, does A implement B (A < B)? If a TIOA's signature and state space (except for the time dimension)
are finite, then it can be regarded as a (input-enabled) timed automaton [1]. Therefore, model-checking
techniques for timed automata (TA) can be brought to bear on the TIOA implementation problem. For the
Phase II project, we intend to build on our prior work on Monte Carlo model checking [34] by extending
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this approach to TIOA. This work was not part of the Phase I effort, but rather was developed indepen-
dently by Stony Brook University subcontractors Grosu and Smolka. Our initial results on applying Monte
Carlo model checking to TA are very encouraging; this leads us to believe that we will witness the same
performance and scalability advantages offered by this approach during the Phase II effort.

5. PVS and theorem proving

In Phase I we have established that TIOA language is well-suited for translation into axioms that can be
used by existing interactive theorem provers, and specifically PVS. In such translations, all imperative
statements in the effects of transition definitions, including assignment statements, choose statements,
conditionals, and loops, are replaced by functions and predicates relating poststates to prestates. Other
axioms are derived from formal definitions of the data types used in the automata. We have used theorem
provers to prove properties of data types used in automata, invariants of automata, and simulation relations
between automata. We are able to identify and formulate proof obligations for cases in which validity
requirements for TIOA programs cannot be checked statically by the front end.

In Phase II we are going to develop a production-grade interface to PVS and provide PVS strategies specif-
ically designed to deal with specifications derived from TIOA. The motivation for developing a TIOA-
specific interface for PVS is two fold: first, it will relieve the TIOA users from having to master PVS's own
specification language and its quirks; second, with a suite of TIOA specific PVS proof strategies, it will be
possible to limit the human interaction to the essential parts, and also to generate human readable proofs.

6. Component integration

The overall goal of work on sofware tools in Phase II is to raise the current prototype tools to produc-
tion quality. We expect to gain the following benefits including improved user interfaces for the TIOA
tools, improved integration of the TIOA tools, extended tool functionality, improved tool reliability and
maintainability, and improved documentation.

7. Integrated Graphical User Interface (GUI)

Our goal is to provide an integrated development environment that enables the user to access the indi-
vidual tools through a consistent windowed interface. Much of the user-visible work in Phase II will
take advantage of features provided by the Eclipse Rich Client Platform development platform (see
http://www.eclipse.org/rcp). Lower-level code improvements will take advantage of features provided by
the Eclipse Java Development Tools (see http://www.eclipse.org/jdt). We also will provide facilities for
user-defined visualization of automata specifications and simulated executions.

8. User documentation

We will develop a comprehensive set of user manuals covering each individual tool developed within the
project. Additionally we will develop user guides that introduce the users to the overall framework and
its usage pattern, making it easier to use the tools developed in Phase II and any external tools integrated
within the project, most notable PVS.


